ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum nucleation in a single-chain magnet

88   0   0.0 ( 0 )
 نشر من قبل Wolfgang Wernsdorfer
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The field sweep rate (v=dH/dt) and temperature (T) dependence of the magnetization reversal of a single-chain magnet (SCM) is studied at low temperatures. As expected for a thermally activated process, the nucleation field (H_n) increases with decreasing T and increasing v. The set of H_n(T,v) data is analyzed with a model of thermally activated nucleation of magnetization reversal. Below 1 K, H_n becomes temperature independent but remains strongly sweep rate dependent. In this temperature range, the reversal of the magnetization is induced by a quantum nucleation of a domain wall that then propagates due to the applied field.



قيم البحث

اقرأ أيضاً

Helicity indicates the in-plane magnetic-moment swirling direction of a skyrmionic configuration. The ability to reverse the helicity of a skyrmionic bubble via purely electrical means has been predicted in frustrated magnetic systems, however its ex perimental observation has remained challenging. Here, we experimentally demonstrate the current-driven helicity reversal of the skyrmionic bubble in a nanostructured frustrated Fe3Sn2 magnet. The critical current density required to trigger the helicity reversal is 109 - 1010 A/m2, with a corresponding pulse-width varying from 1 {mu}s to 100 ns. Computational simulations reveal that both the pinning effect and dipole-dipole interaction play a crucial role in the helicity-reversal process.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
128 - C. Coulon , R. Clerac , L. Lecren 2004
The Glauber dynamics is studied in a single-chain magnet. As predicted, a single relaxation mode of the magnetization is found. Above 2.7 K, the thermally activated relaxation time is mainly governed by the effect of magnetic correlations and the ene rgy barrier experienced by each magnetic unit. This result is in perfect agreement with independent thermodynamical measurements. Below 2.7 K, a crossover towards a relaxation regime is observed that is interpreted as the manifestation of finite-size effects. The temperature dependences of the relaxation time and of the magnetic susceptibility reveal the importance of the boundary conditions.
85 - August Bouwen 2001
A high-frequency (95 GHz) EPR study is reported on single crystals of the planar tetranuclear complex Fe4(OCH3)6(dpm)6 (where Hdpm = dipivaloylmethane), which has been previously shown to present typical single-molecule magnet behaviour. The spectra, all originating from the S = 5 ground state, possess quasi-axial symmetry along the normal to the plane defined by the four Fe(III) ions. The measured spectra are shown to belong to three different structural variations of the compound, resulting from disorder in the ligands around two of the Fe(III) ions. Accurate values could be obtained for the second- and fourth-order crystal field parameters related to the parallel EPR-spectra, while the other parameters could be determined only for the dominant species. The separation between individual lines is decreasing and vanishing with increasing temperature. This effect is attributed to the contribution of fast relaxing excited states, whose population is varying with temperature.
W-band ({ u} ca. 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivi ty accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S =6) and first two excited states (S =5 and S =4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a pi/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called giant spin approach and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا