ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-Crystal High-Frequency EPR Investigation of a Tetranuclear Iron(III) Single-Molecule Magnet

86   0   0.0 ( 0 )
 نشر من قبل Lorenzo Sorace
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف August Bouwen




اسأل ChatGPT حول البحث

A high-frequency (95 GHz) EPR study is reported on single crystals of the planar tetranuclear complex Fe4(OCH3)6(dpm)6 (where Hdpm = dipivaloylmethane), which has been previously shown to present typical single-molecule magnet behaviour. The spectra, all originating from the S = 5 ground state, possess quasi-axial symmetry along the normal to the plane defined by the four Fe(III) ions. The measured spectra are shown to belong to three different structural variations of the compound, resulting from disorder in the ligands around two of the Fe(III) ions. Accurate values could be obtained for the second- and fourth-order crystal field parameters related to the parallel EPR-spectra, while the other parameters could be determined only for the dominant species. The separation between individual lines is decreasing and vanishing with increasing temperature. This effect is attributed to the contribution of fast relaxing excited states, whose population is varying with temperature.



قيم البحث

اقرأ أيضاً

We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
W-band ({ u} ca. 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivi ty accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S =6) and first two excited states (S =5 and S =4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a pi/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called giant spin approach and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).
We present a method for precisely measuring the tunnel splitting in single-molecule magnets using electron-spin resonance, and use these measurements to precisely and independently determine the underlying transverse anisotropy parameter, given a cer tain class of transitions. By diluting samples of the SMM Ni$_4$ via co-crystallization in a diamagnetic isostructural analogue we obtain markedly narrower resonance peaks than are observed in undiluted samples. Using custom loop-gap resonators we measure the transitions at several frequencies, allowing a precise determination of the tunnel splitting. Because the transition under investigation occurs at zero field, and arises due to a first-order perturbation from the transverse anisotropy, we can determine the magnitude of this anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with tunnel splittings arising from first-order transverse anisotropy perturbations.
We measure magnetization changes in a single crystal of the single-molecule magnet Fe8 when exposed to intense, short (<20 $mu$s) pulses of microwave radiation resonant with the m = 10 to 9 transition. We find that radiation induces a phonon bottlene ck in the system with a time scale of ~5 $mu$s. The phonon bottleneck, in turn, drives the spin dynamics, allowing observation of thermally assisted resonant tunneling between spin states at the 100-ns time scale. Detailed numerical simulations quantitatively reproduce the data and yield a spin-phonon relaxation time of T1 ~ 40 ns.
The low temperature spin dynamics of a Fe8 Single-Molecule Magnet was studied under circularly polarized electromagnetic radiation allowing us to establish clearly photon-assisted tunneling. This effect, while linear at low power, becomes highly non- linear above a relatively low power threshold. This non-linearity is attributed to the nature of the coupling of the sample to the thermostat.These results are of great importance if such systems are to be used as quantum computers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا