ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic structure and excitations of the topological semimetal YbMnBi$_2$

84   0   0.0 ( 0 )
 نشر من قبل Jian Rui Soh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the magnetic structure and dynamics of YbMnBi$_2$, with elastic and inelastic neutron scattering, to shed light on the topological nature of the charge carriers in the antiferromagnetic phase. We confirm C-type antiferromagnetic ordering of the Mn spins below $T_{rm N} = 290$ K, and determine that the spins point along the $c$-axis to within about $3^circ$. The observed magnon spectrum can be described very well by the same effective spin Hamiltonian as was used previously to model the magnon spectrum of CaMnBi$_2$. Our results show conclusively that the creation of Weyl nodes in YbMnBi$_2$ by the time-reversal-symmetry breaking mechanism can be excluded in the bulk.

قيم البحث

اقرأ أيضاً

The antiferromagnetic (AFM) semimetal YbMnSb$_2$ has recently been identified as a candidate topological material, driven by time-reversal symmetry breaking. Depending on the ordered arrangement of Mn spins below the N{e}el temperature, $T_mathrm{N}$ = 345 K, the electronic bands near the Fermi energy can ether have a Dirac node, a Weyl node or a nodal line. We have investigated the ground state magnetic structure of YbMnSb$_2$ using unpolarized and polarized single crystal neutron diffraction. We find that the Mn moments lie along the $c$ axis of the $P4/nmm$ space group and are arranged in a C-type AFM structure, which implies the existence of gapped Dirac nodes near the Fermi level. The results highlight how different magnetic structures can critically affect the topological nature of fermions in semimetals.
We report an experimental study of the magnetic order and electronic structure and transport of the layered pnictide EuMnSb$_2$, performed using neutron diffraction, angle-resolved photoemission spectroscopy (ARPES), and magnetotransport measurements . We find that the Eu and Mn sublattices display antiferromagnetic (AFM) order below $T_mathrm{N}^mathrm{Eu} = 21(1)$ K and $T_mathrm{N}^mathrm{Mn} = 350(2)$ K respectively. The former can be described by an A-type AFM structure with the Eu spins aligned along the $c$ axis (an in-plane direction), whereas the latter has a C-type AFM structure with Mn moments along the $a$--axis (perpendicular to the layers). The ARPES spectra reveal Dirac-like linearly dispersing bands near the Fermi energy. Furthermore, our magnetotransport measurements show strongly anisotropic magnetoresistance, and indicate that the Eu sublattice is intimately coupled to conduction electron states near the Dirac point.
We report the magnetic diffraction pattern and spin wave excitations in (CD$_3$)$_2$ND$_2$[Mn(DCO$_2$)$_3$] measured using elastic and inelastic neutron scattering. The magnetic structure is shown to be a G-type antiferromagnet with moments pointing along the $b$ axis. By comparison with simulations based on linear spin wave theory, we have developed a model for the magnetic interactions in this multiferroic metal-organic framework material. The interactions form a three-dimensional network with antiferromagnetic nearest-neighbour interactions along three directions of $J_1=-0.103(8)$~meV, $J_2=-0.032(8)$~meV and $J_3=-0.035(8)$~meV.
We report discovery of new antiferromagnetic semimetal EuZnSb$_2$, obtained and studied in the form of single crystals. Electric resistivity, magnetic susceptibility and heat capacity indicate antiferromagnetic order of Eu with $T_N$ = 20 K. The effe ctive moment of Eu$^{2+}$ inferred from the magnetization and specific heat measurement is 3.5 $mu_B$, smaller than the theoretical value of Eu$^{2+}$ due to presence of both Eu$^{3+}$ and Eu$^{2+}$. Magnetic field-dependent resistivity measurements suggest dominant quasi two dimensional Fermi surfaces whereas the first-principle calculations point to the presence of Dirac fermions. Therefore, EuZnSb$_2$ could represent the first platform to study the interplay of dynamical charge fluctuations, localized magnetic 4$f$ moments and Dirac states with Sb orbital character.
The antiferromagnet and semimetal EuCd$_2$As$_2$ has recently attracted a lot of attention due to a wealth of topological phases arising from the interplay of topology and magnetism. In particular, the presence of a single pair of Weyl points is pred icted for a ferromagnetic configuration of Eu spins along the $c$-axis in EuCd$_2$As$_2$. In the search for such phases, we investigate here the effects of hydrostatic pressure in EuCd$_2$As$_2$. For that, we present specific heat, transport and $mu$SR measurements under hydrostatic pressure up to $sim,2.5,$GPa, combined with {it ab initio} density functional theory (DFT) calculations. Experimentally, we establish that the ground state of EuCd$_2$As$_2$ changes from in-plane antiferromagnetic (AFM$_{ab}$) to ferromagnetic at a critical pressure of $,approx,$2,GPa, which is likely characterized by the moments dominantly lying within the $ab$ plane (FM$_{ab}$). The AFM$_{ab}$-FM$_{ab}$ transition at such a relatively low pressure is supported by our DFT calculations. Furthermore, our experimental and theoretical results indicate that EuCd$_2$As$_2$ moves closer to the sought-for FM$_c$ state (moments $parallel$ $c$) with increasing pressure further. We predict that a pressure of $approx$,23,GPa will stabilize the FM$_c$ state, if Eu remains in a 2+ valence state. Thus, our work establishes hydrostatic pressure as a key tuning parameter that (i) allows for a continuous tuning between magnetic ground states in a single sample of EuCd$_2$As$_2$ and (ii) enables the exploration of the interplay between magnetism and topology and thereby motivates a series of future experiments on this magnetic Weyl semimetal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا