ﻻ يوجد ملخص باللغة العربية
We scrutinize the accuracy of the pseudopotential approximation in density-functional theory (DFT) calculations of surfaces by systematically comparing to results obtained within a full-potential setup. As model system we choose the CO oxidation at a RuO2(110) surface and focus in particular on the adsorbate binding energies and reaction barriers as target quantities for the comparison. Rather surprisingly, the major reason for discrepancy does not result from the neglected semi-core state relaxation in the frozen-core approximation, but from an inadequate description of the local part of the Ru pseudopotential, responsible for the scattering of f like waves. Tiny, seemingly irrelevant, imprecisions appearing in these properties can have a noticeable influence on the surface energetics. At least for the present example, we obtain excellent agreement between both approaches, if the pseudopotential describes these scattering properties accurately.
We implement and benchmark the frozen core approximation, a technique commonly adopted in electronic structure theory to reduce the computational cost by means of mathematically fixing the chemically inactive core electron states. The accuracy and ef
A globally-adaptive curvilinear coordinate formalism is shown to be easily convertible to a class of curvilinear transformations locally optimized around atom sites by a few parameters. Parameter transferability is established for a demanding test ca
We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five
The essential features of a full potential electronic structure method using Linear Muffin-Tin Orbitals (LMTOs) are presented. The electron density and potential in the this method are represented with no inherent geometrical approximation. This meth
We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transf