ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystallization in two-component Coulomb systems

71   0   0.0 ( 0 )
 نشر من قبل Michael Bonitz
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principle computer simulations.

قيم البحث

اقرأ أيضاً

One-dimensional (1D) electron-hole (e-h) systems in a high-density regime is investigated by means of bozonization techniques. It turned out that the systems are insulating even at the high density limit and that the exciton Mott transition (insulato r-to-metal transition) never occurs at absolute zero temperature. The insulating ground state exhibits a strong instability towards the crystallization of biexcitons.
When electrons in a solid are excited to a higher energy band they leave behind a vacancy (hole) in the original band which behaves like a positively charged particle. Here we predict that holes can spontaneously order into a regular lattice in semic onductors with sufficiently flat valence bands. The critical hole to electron effective mass ratio required for this phase transition is found to be of the order of 80.
We investigate the low-temperature electron, lattice, and spin dynamics of LaMnO_3 (LMO) and La_0.7Ca_0.3MnO_3 (LCMO) by resonant pump-probe reflectance spectroscopy. Probing the high-spin d-d transition as a function of time delay and probe energy, we compare the responses of the Mott insulator and the double-exchange metal to the photoexcitation. Attempts have previously been made to describe the sub-picosecond dynamics of CMR manganites in terms of a phenomenological three temperature model describing the energy transfer between the electron, lattice and spin subsystems followed by a comparatively slow exponential decay back to the ground state. However, conflicting results have been reported. Here we first show clear evidence of an additional component in the long term relaxation due to film-to-substrate heat diffusion and then develop a modified three temperature model that gives a consistent account for this feature. We confirm our interpretation by using it to deduce the bandgap in LMO. In addition we also model the non-thermal sub-picosecond dynamics, giving a full account of all observed transient features both in the insulating LMO and the metallic LCMO.
The spinel vanadates have become a model family for exploring orbital order on the frustrated pyrochlore lattice, and recent debate has focused on the symmetry of local crystal fields at the cation sites. Here, we present neutron scattering measureme nts of the magnetic excitation spectrum in $mathrm{FeV_2O_4}$, a recent example of a ferrimagnetic spinel vanadate which is available in single crystal form. We report the existence of two emergent magnon modes at low temperatures, which draw strong parallels with the closely related material, $mathrm{MnV_2O_4}$. We were able to reproduce the essential elements of both the magnetic ordering pattern and the dispersion of the inelastic modes with semi- classical spin wave calculations, using a minimal model that implies a sizeable single-ion anisotropy on the vanadium sublattice. Taking into account the direction of ordered spins, we associate this anisotropy with the large trigonal distortion of $mathrm{VO_6}$ octahedra, previously observed via neutron powder diffraction measurements. We further report on the spin gap, which is an order-of-magnitude larger than that observed in $mathrm{MnV_2O_4}$. By looking at the overall temperature dependence, we were able to show that the gap magnitude is largely associated with the ferro-orbital order known to exist on the iron sublattice, but the contribution to the gap from the vanadium sublattice is in fact comparable to what is reported in the Mn compound. This reinforces the conclusion that the spin canting transition is associated with the ordering of vanadium orbitals in this system, and closer analysis indicates closely related physics underlying orbital transitions in $mathrm{FeV_2O_4}$ and $mathrm{MnV_2O_4}$.
The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fra ctions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا