ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a two component magnetic response in UPt3

231   0   0.0 ( 0 )
 نشر من قبل P. Dalmas de Reotier
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.

قيم البحث

اقرأ أيضاً

A fundamental difference between antiferromagnets and ferromagnets is the lack of linear coupling to a uniform magnetic field due to the staggered order parameter. Such coupling is possible via the Dzyaloshinskii-Moriya (DM) interaction but at the ex pense of reduced antiferromagnetic (AFM) susceptibility due to the canting-induced spin anisotropy. We solve this long-standing problem with a top-down approach that utilizes spin-orbit coupling in the presence of a hidden SU(2) symmetry. We demonstrate giant AFM responses to sub-Tesla external fields by exploiting the extremely strong two-dimensional critical fluctuations preserved under a symmetry-invariant exchange anisotropy, which is built into a square-lattice artificially synthesized as a superlattice of SrIrO3 and SrTiO3. The observed field-induced logarithmic increase of the ordering temperature enables highly efficient control of the AFM order. As antiferromagnets promise to afford switching speed and storage security far beyond ferromagnets, our symmetry-invariant approach unleashes the great potential of functional antiferromagnets.
We have prepared magnetic graphite samples bombarded by protons at low temperatures and low fluences to attenuate the large thermal annealing produced during irradiation. An overall optimization of sample handling allowed us to find Curie temperature s $ T_c gtrsim 350$ K at the used fluences. The magnetization versus temperature shows unequivocally a linear dependence, which can be interpreted as due to excitations of spin waves in a two dimensional Heisenberg model with a weak uniaxial anisotropy.
Recent discovery of both gapped and gapless topological phases in weakly correlated electron systems has introduced various relativistic particles and a number of exotic phenomena in condensed matter physics. The Weyl fermion is a prominent example o f three dimensional (3D), gapless topological excitation, which has been experimentally identified in inversion symmetry breaking semimetals. However, their realization in spontaneously time reversal symmetry (TRS) breaking magnetically ordered states of correlated materials has so far remained hypothetical. Here, we report a set of experimental evidence for elusive magnetic Weyl fermions in Mn$_3$Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect even at room temperature. Detailed comparison between our angle resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3$d$ electrons. Moreover, our transport measurements have unveiled strong evidence for the chiral anomaly of Weyl fermions, namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. The magnetic Weyl fermions of Mn$_3$Sn have a significant technological potential, since a weak field ($sim$ 10 mT) is adequate for controlling the distribution of Weyl points and the large fictitious field ($sim$ a few 100 T) in the momentum space. Our discovery thus lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems.
We have studied magnetic and transport properties in polycrystalline CaRu1-xScxO3 for 0 =< x =< 0.20 in order to clarify the substitution effects of a non-magnetic trivalent ion. We find that a ferromagnetic transition with Tc = 30 K is observed in S c-substituted samples. The composition dependence of the Curie-Weiss temperature implies that the magnetic susceptibility has a paramagnetic contribution with negative theta and a ferromagnetic contribution with positive theta. The field dependence of magnetization at 2 K is also understood as a summation of the ferromagnetic and paramagnetic components. These results suggest that CaRu1-xScxO3 is a non-uniform magnetic system. The relationship between the ferromagnetic ordering and the transport properties is also discussed.
The spinel vanadates have become a model family for exploring orbital order on the frustrated pyrochlore lattice, and recent debate has focused on the symmetry of local crystal fields at the cation sites. Here, we present neutron scattering measureme nts of the magnetic excitation spectrum in $mathrm{FeV_2O_4}$, a recent example of a ferrimagnetic spinel vanadate which is available in single crystal form. We report the existence of two emergent magnon modes at low temperatures, which draw strong parallels with the closely related material, $mathrm{MnV_2O_4}$. We were able to reproduce the essential elements of both the magnetic ordering pattern and the dispersion of the inelastic modes with semi- classical spin wave calculations, using a minimal model that implies a sizeable single-ion anisotropy on the vanadium sublattice. Taking into account the direction of ordered spins, we associate this anisotropy with the large trigonal distortion of $mathrm{VO_6}$ octahedra, previously observed via neutron powder diffraction measurements. We further report on the spin gap, which is an order-of-magnitude larger than that observed in $mathrm{MnV_2O_4}$. By looking at the overall temperature dependence, we were able to show that the gap magnitude is largely associated with the ferro-orbital order known to exist on the iron sublattice, but the contribution to the gap from the vanadium sublattice is in fact comparable to what is reported in the Mn compound. This reinforces the conclusion that the spin canting transition is associated with the ordering of vanadium orbitals in this system, and closer analysis indicates closely related physics underlying orbital transitions in $mathrm{FeV_2O_4}$ and $mathrm{MnV_2O_4}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا