ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Transport Imaging in a Multiwire SnO2 ChemFET Device

27   0   0.0 ( 0 )
 نشر من قبل Andrei Kolmakov A
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic transport and the sensing performance of an individual SnO2 crossed nanowires device in a three-terminal field effect configuration were investigated using a combination of macroscopic transport measurements and Scanning Surface Potential Microscopy (SSPM). The structure of the device was determined using both Scanning Electron- and Atomic Force Microscopy data. The SSPM images of two crossed 1D nanostructures, simulating a prototypical nanowire network sensors, exhibit large dc potential drops at the crossed-wire junction and at the contacts, identifying them as the primary electroactive elements in the circuit. The gas sensitivity of this device was comparable to those of sensors formed by individual homogeneous nanostructures of similar dimensions. Under ambient conditions, the DC transport measurements were found to be strongly affected by field-induced surface charges on the nanostructure and the gate oxide. These charges result in a memory effect in transport measurements and charge dynamics which are visualized by SSPM. Finally, scanning probe microscopy is used to measure the current-voltage characteristics of individual active circuit elements, paving the way to a detailed understanding of chemical functionality at the level of an individual electroactive element in an individual nanowire.

قيم البحث

اقرأ أيضاً

Various novel physical properties have emerged in Dirac electronic systems, especially the topological characters protected by symmetry. Current studies on these systems have been greatly promoted by the intuitive concepts of Berry phase and Berry cu rvature, which provide precise definitions of the topological orders. In this topical review, transport properties of topological insulator (Bi2Se3), topological Dirac semimetal (Cd3As2) and topological insulator-graphene heterojunction are presented and discussed. Perspectives about transport properties of two-dimensional topological nontrivial systems, including topological edge transport, topological valley transport and topological Weyl semimetals, are provided.
Ab initio studies have theoretically predicted room temperature ferromagnetism in crystalline SnO2, ZrO2 and TiO2 doped with non magnetic element from the 1A column as K and Na. Our purpose is to address experimentally the possibility of magnetism in both Sn1-xKxO2 and Sn1-xCaxO2 compounds. The samples have been prepared using equilibrium methods of standard solid state route. Our study has shown that both Sn1-xCaxO2 and Sn1-xKxO2 structure is thermodynamically unstable and leads to a phase separation, as shown by X-ray diffraction and detailed micro-structural analyses with high resolution transmission electron microscopy (TEM). In particular, the crystalline SnO2 grains are surrounded by K-based amorphous phase. In contrast to Ca: SnO2 samples we have obtained a magnetic phase in K: SnO2 ones, but no long range ferromagnetic order. The K: SnO2 samples exhibit a moments of the order of 0.2 {mu}B/K /ion, in contrast to ab-initio calculations which predict 3{mu}B, where K atoms are on the Sn crystallographic site. The apparent contradictions between our experiments and first principle studies are discussed.
119Sn nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rate (1/T1) in SnO2 nanoparticles were measured as a function of temperature and compared with those of SnO2 bulk sample. A 15% loss of 119Sn NMR signal intensity for the nano sample compared to the bulk sample was observed. This is indicative of ferromagnetism from a small fraction of the sample. Another major finding is that the recovery of the 119Sn longitudinal nuclear magnetization in the nano sample follows a stretched exponential behavior, as opposed to that in bulk which is exponential. Further, the 119Sn 1/T1 at room temperature is found to be much higher for the nano sample than for its bulk counterpart. These results indicate the presence of magnetic fluctuations in SnO2 nanoparticles in contrast to the bulk (non-nano) which is diamagnetic. These local moments could arise from surface defects in the nanoparticles.
71 - V. Bonu , B. Gupta , S. Chandra 2016
Metal oxide nanostructures are widely used in energy applications like super capacitors and Li-on battery. Smaller size nanocrystals show better stability, low ion diffusion time, higher-ion flux and low pulverization than bigger size nanocrystals du ring electrochemical operation. Studying the distinct properties of smaller size nanocrystals such as quantum dots (QDs) can improve the understanding on reasons behind the better performance and it will also help in using QDs or smaller size nanoparticles (NPs) more efficiently in different applications. Aqua stable pure SnO2 QDs with compositional stability and high surface to volume ratio are studied as an electrochemical super capacitor material and compared with bigger size NPs of size 25 nm. Electron energy-loss spectroscopic study of the QDs revealed dominant role of surface over the bulk. Temperature dependent study of low frequency Raman mode and defect Raman mode of QDs indicated no apparent volume change in the SnO2 QDs within the temperature range of 80-300 K. The specific capacitance of these high surface area and stable SnO2 QDs has showed only 9% loss while increasing the scan rate from 20 mV/S to 500 mV/S. Capacitance loss for the QDs is less than 2% after 1000 cycles of charging discharging, whereas for the 25 nm SnO2 NPs, the capacitance loss is 8% after 1000 cycles. Availability of excess open volume in QDs leading to no change in volume during the electro-chemical operation and good aqua stability is attributed to the better performance of QDs over bigger sized NPs.
The Persistent Photoconductivity (PPC) effect was studied in individual tin oxide (SnO2) nanobelts as a function of temperature, in air, helium, and vacuum atmospheres, and low temperature Photoluminescence measurements were carried out to study the optical transitions and to determine of the acceptor/donors levels and their best representation inside the band gap. Under ultraviolet (UV) illumination and at temperatures in the range of 200 to 400K we observed a fast and strong enhancement of the photoconductivity, and the maximum value of the photocurrent induced increases as the temperature or the oxygen concentration decreases. By turning off the UV illumination the induced photocurrent decays with lifetimes up to several hours. The photoconductivity and the PPC results were explained by adsorption and desorption of molecular oxygen at the surface of the SnO2 nanobelts. Based on the temperature dependence of the PPC decay an activation energy of 230 meV was found, which corresponds to the energy necessary for thermal ionization of free holes from acceptor levels to the valence band, in agreement with the photoluminescence results presented. The molecular-oxygen recombination with holes is the origin of the PPC effect in metal oxide semiconductors, so that, the PPC effect is not related to the oxygen vacancies, as commonly presented in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا