ترغب بنشر مسار تعليمي؟ اضغط هنا

Separating spin and charge transport in single wall carbon nanotubes

165   0   0.0 ( 0 )
 نشر من قبل Nikolaos Tombros
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate spin injection and detection in single wall carbon nanotubes using a 4-terminal, non-local geometry. This measurement geometry completely separates the charge and spin circuits. Hence all spurious magnetoresistance effects are eliminated and the measured signal is due to spin accumulation only. Combining our results with a theoretical model, we deduce a spin polarization at the contacts of approximately 25 %. We show that the magnetoresistance changes measured in the conventional two-terminal geometry are dominated by effects not related to spin accumulation.



قيم البحث

اقرأ أيضاً

Using the real-time diagrammatic technique and taking into account both the sequential and cotunneling processes, we analyze the transport properties of single-wall metallic carbon nanotubes coupled to nonmagnetic and ferromagnetic leads in the full range of parameters. In particular, considering the two different shell filling schemes of the nanotubes, we discuss the behavior of the differential conductance, tunnel magnetoresistance and the shot noise. We show that in the Coulomb diamonds corresponding to even occupations, the shot noise becomes super-Poissonian due to bunching of fast tunneling processes resulting from the dynamical channel blockade, whereas in the other diamonds the noise is roughly Poissonian, in agreement with recent experiments. The tunnel magnetoresistance is very sensitive to the number of electrons in the nanotube and exhibits a distinctively different behavior depending on the shell filling sequence of the nanotube.
We present a simple technique which uses a self-aligned oxide etch to suspend individual single-wall carbon nanotubes between metallic electrodes. This enables one to compare the properties of a particular nanotube before and after suspension, as wel l as to study transport in suspended tubes. As an example of the utility of the technique, we study quantum dots in suspended tubes, finding that their capacitances are reduced owing to the removal of the dielectric substrate.
Semiconducting single-wall carbon nanotubes are classified into two types by means of orbital angular momentum of valley state, which is useful to study their low energy electronic properties in finite-length. The classification is given by an intege r $d$, which is the greatest common divisor of two integers $n$ and $m$ specifying the chirality of nanotubes, by analyzing cutting lines. For the case that $d$ is equal to or greater than four, two lowest subbands from two valleys have different angular momenta with respect to the nanotube axis. Reflecting the decoupling of two valleys, discrete energy levels in finite-length nanotubes exhibit nearly fourfold degeneracy and its small lift by the spin-orbit interaction. For the case that $d$ is less than or equal to two, in which two lowest subbands from two valleys have the same angular momentum, discrete levels exhibit lift of fourfold degeneracy reflecting the coupling of two valleys. Especially, two valleys are strongly coupled when the chirality is close to the armchair chirality. An effective one-dimensional lattice model is derived by extracting states with relevant angular momentum, which reveals the valley coupling in the eigenstates. A bulk-edge correspondence, relationship between number of edge states and the winding number calculated in the corresponding bulk system, is analytically shown by using the argument principle, which enables us to estimate the number of edge states from the bulk property. The number of edge states depends not only on the chirality but also on the shape of boundary.
157 - M. Salvato , M. Cirillo , M. Lucci 2008
We investigate experimentally the transport properties of single-walled carbon nanotube bundles as a function of temperature and applied current over broad intervals of these variables. The analysis is performed on arrays of nanotube bundles whose ax es are aligned along the direction of the externally supplied bias current. The data are found consistent with a charge transport model governed by the tunnelling between metallic regions occurring through potential barriers generated by nanotubes contact areas or bundles surfaces. Based on this model and on experimental data we describe quantitatively the dependencies of the amplitude of these barriers upon bias current and temperature.
455 - I. V. Bondarev 2011
The possibility of low-energy surface plasmon amplification by optically excited excitons in small-diameter single wall carbon nanotubes is theoretically demonstrated. The nonradiative exciton-plasmon energy transfer causes the buildup of the macrosc opic population numbers of coherent localized surface plasmons associated with high-intensity coherent local fields formed at nanoscale throughout the nanotube surface. These strong local fields can be used in a variety of new optoelectronic applications of carbon nanotubes, including near-field nonlinear-optical probing and sensing, optical switching, enhanced electromagnetic absorption, and materials nanoscale modification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا