ترغب بنشر مسار تعليمي؟ اضغط هنا

Hall Effect anomalies near Quantum Critical Point in CeCu6-xAux

93   0   0.0 ( 0 )
 نشر من قبل Dmitry Sluchanko
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precision measurements of the Hall effect have been carried out for both archetypal heavy fermion compound - CeCu6 and exemplary solid solutions CeCu6-xAux (x= 0.1 and 0.2) with quantum critical behavior. The experimental results have been obtained by technique with a sample rotation in magnetic field in the temperature range 1.8-300K. The experiment revealed a complex activation type dependence of the Hall coefficient RH(T) in CeCu6 with activation energies Ea1/kB = 110K and Ea2/kB = 1.5K in temperature ranges 50-300K and 3-10K, respectively. Microscopic parameters of charge carriers transport (effective masses, relaxation time) and localization radii ap1,2* of heavy fermions (ap1*(T>50K)= 1.7 A and ap2*(T<20K)= 14 A) were estimated for CeCu6. The second angular harmonic contribution has been established in the Hall voltage of CeCu5.9Au0.1 and CeCu6 at temperatures below T*=24K. A hyperbolic type divergence of the second harmonic term in Hall effect RH2(T)= C(1/T-1/T*) at low temperatures is found to be accompanied with a power-law behavior RH(T)= T -0.4 of the main contribution in the Hall coefficient for CeCu5.9Au0.1 compound with quantum critical behavior.

قيم البحث

اقرأ أيضاً

70 - I. v{C}urlik 2014
Structural, magnetic, transport and thermal properties of YbCu5-xAux alloys with Au concentration between the limit of structural stability of AuBe5 type at x = 0.4 up to x = 0.7 are reported. The outstanding features of this system are: i) the const ant and record high values of Cm /T 7J/molK^2 below a characteristic temperature T*, ranging between 150 mK and 350 mK. ii) A power law thermal dependence dependence Cm/T(T>T*)=A/T^q, with q = 1.3 +/- 0.1, and iii) an arising incoherent electronic scattering observed in the resistivity at T < 1K for x < 0.6 despite the fact that Yb magnetic atoms are placed in a lattice. Magnetic frustration, originated in the tetrahedral distribution of Yb atoms, appears as the responsible of the exotic behavior of this system.
The heavy-fermion compound CeCu$_{6-x}$Au$_x$ has become a model system for unconventional magnetic quantum criticality. For small Au concentrations $0 leq x < 0.16$, the compound undergoes a structural transition from orthorhombic to monoclinic crys tal symmetry at a temperature $T_{s}$ with $T_{s} rightarrow 0$ for $x approx 0.15$. Antiferromagnetic order sets in close to $x approx 0.1$. To shed light on the interplay between quantum critical magnetic and structural fluctuations we performed neutron-scattering and thermodynamic measurements on samples with $0 leq xleq 0.3$. The resulting phase diagram shows that the antiferromagnetic and monoclinic phase coexist in a tiny Au concentration range between $xapprox 0.1$ and $0.15$. The application of hydrostatic and chemical pressure allows to clearly separate the transitions from each other and to explore a possible effect of the structural transition on the magnetic quantum critical behavior. Our measurements demonstrate that at low temperatures the unconventional quantum criticality exclusively arises from magnetic fluctuations and is not affected by the monoclinic distortion.
The angular, temperature and magnetic field dependences of Hall resistance roH for the rare-earth dodecaboride solid solutions Tm1-xYbxB12 have been studied in a wide vicinity of the quantum critical point (QCP) xC~0.3. The measurements performed in the temperature range 1.9-300 K on high quality single crystals allowed to find out for the first time in these fcc compounds both an appearance of the second harmonic contribution in ro2H at QCP and its enhancement under the Tm to ytterbium substitution and/or with increase of external magnetic field. When the Yb concentration x increases a negative maximum of a significant amplitude was shown to appear on the temperature dependences of Hall coefficient RH(T) for the Tm1-xYbxB12 compounds. Moreover, a complicated activation type behavior of the Hall coefficient is observed at intermediate temperatures for x>0.5 with activation energies Eg~200K and Ea~55-75K in combination with the sign inversion of RH(T) at low temperatures in the coherent regime. The density of states renormalization effects are analyzed within the variation of Yb concentration and the features of the charge transport in various regimes (charge gap formation, intra-gap manybody resonance and coherent regime) are discussed in detail in Tm1-xYbxB12 solid solutions.
98 - H. Maebashi , K. Miyake , 2005
The problem of a spin-1/2 magnetic impurity near an antiferromagnetic transition of the host lattice is solved. The problem is shown to transform to a multichannel problem. A variety of fixed points is discovered asymptotically near the AFM-critical point. Among these is a new variety of stable fixed point of a multichannel Kondo problem which does not require channel isotropy. At this point Kondo screening disappears but coupling to spin-fluctuations remains. Besides its intrinsic interest, the problem is an essential ingredient in the problem of quantum critical points in heavy-fermions.
In metals near a quantum critical point, the electrical resistance is thought to be determined by the lifetime of the carriers of current, rather than the scattering from defects. The observation of $T$-linear resistivity suggests that the lifetime o nly depends on temperature, implying the vanishing of an intrinsic energy scale and the presence of a quantum critical point. Our data suggest that this concept extends to the magnetic field dependence of the resistivity in the unconventional superconductor BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ near its quantum critical point. We find that the lifetime depends on magnetic field in the same way as it depends on temperature, scaled by the ratio of two fundamental constants $mu_B/k_B$. These measurements imply that high magnetic fields probe the same quantum dynamics that give rise to the $T$-linear resistivity, revealing a novel kind of magnetoresistance that does not depend on details of the Fermi surface, but rather on the balance of thermal and magnetic energy scales. This opens new opportunities for the investigation of transport near a quantum critical point by using magnetic fields to couple selectively to charge, spin and spatial anisotropies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا