ﻻ يوجد ملخص باللغة العربية
The exact solution of the 1D interacting mixed Bose-Fermi gas is used to calculate ground-state properties both for finite systems and in the thermodynamic limit. The quasimomentum distribution, ground-state energy and generalized velocities are obtained as functions of the interaction strength both for polarized and non-polarized fermions. We do not observe any demixing instability of the system for repulsive interactions.
We investigate the elementary excitations of charge and spin degrees for the 1D interacting two-component Bose and Fermi gases by means of the discrete Bethe ansatz equations. Analytic results in the limiting cases of strong and weak interactions are
We investigate the 1D interacting two-component Fermi gas with arbitrary polarization. Exact results for the ground state energy, quasimomentum distribution functions, spin velocity and charge velocity reveal subtle polarization dependent quantum effects.
We study the out-of-equilibrium properties of a classical integrable non-relativistic theory, with a time evolution initially prepared with a finite energy density in the thermodynamic limit. The theory considered here is the Non-Linear Schrodinger e
We consider the integrable one-dimensional delta-function interacting Bose gas in a hard wall box which is exactly solved via the coordinate Bethe Ansatz. The ground state energy, including the surface energy, is derived from the Lieb-Liniger type in
We investigate the low temperature behaviour of the integrable 1D two-component spinor Bose gas using the thermodynamic Bethe ansatz. We find that for strong coupling the characteristics of the thermodynamics at low temperatures are quantitatively af