ﻻ يوجد ملخص باللغة العربية
We consider the integrable one-dimensional delta-function interacting Bose gas in a hard wall box which is exactly solved via the coordinate Bethe Ansatz. The ground state energy, including the surface energy, is derived from the Lieb-Liniger type integral equations. The leading and correction terms are obtained in the weak coupling and strong coupling regimes from both the discrete Bethe equations and the integral equations. This allows the investigation of both finite-size and boundary effects in the integrable model. We also study the Luttinger liquid behaviour by calculating Luttinger parameters and correlations. The hard wall boundary conditions are seen to have a strong effect on the ground state energy and phase correlations in the weak coupling regime. Enhancement of the local two-body correlations is shown by application of the Hellmann-Feynman theorem.
In this paper, we compute exactly the average density of a harmonically confined Riesz gas of $N$ particles for large $N$ in the presence of a hard wall. In this Riesz gas, the particles repel each other via a pairwise interaction that behaves as $|x
The exact solution of the 1D interacting mixed Bose-Fermi gas is used to calculate ground-state properties both for finite systems and in the thermodynamic limit. The quasimomentum distribution, ground-state energy and generalized velocities are obta
We investigate the low temperature behaviour of the integrable 1D two-component spinor Bose gas using the thermodynamic Bethe ansatz. We find that for strong coupling the characteristics of the thermodynamics at low temperatures are quantitatively af
We investigate the elementary excitations of charge and spin degrees for the 1D interacting two-component Bose and Fermi gases by means of the discrete Bethe ansatz equations. Analytic results in the limiting cases of strong and weak interactions are
Describing and understanding the motion of quantum gases out of equilibrium is one of the most important modern challenges for theorists. In the groundbreaking Quantum Newton Cradle experiment [Kinoshita, Wenger and Weiss, Nature 440, 900, 2006], qua