ترغب بنشر مسار تعليمي؟ اضغط هنا

All-electronic coherent population trapping in quantum dots

127   0   0.0 ( 0 )
 نشر من قبل Bj\\\"orn Michaelis
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a fully electronic analogue of coherent population trapping in quantum optics, based on destructive interference of single-electron tunneling between three quantum dots. A large bias voltage plays the role of the laser illumination. The trapped state is a coherent superposition of the electronic charge in two of these quantum dots, so it is destabilized as a result of decoherence by coupling to external charges. The resulting current I through the device depends on the ratio of the decoherence rate Gamma_phi and the tunneling rates. For Gamma_phi --> 0 one has simply I=e Gamma_phi. With increasing Gamma_phi the current peaks at the inverse trapping time. The direct relation between I and Gamma_phi can serve as a means of measuring the coherence time of a charge qubit in a transport experiment.



قيم البحث

اقرأ أيضاً

88 - C. W. Groth , B. Michaelis , 2006
Destructive interference of single-electron tunneling between three quantum dots can trap an electron in a coherent superposition of charge on two of the dots. Coupling to external charges causes decoherence of this superposition, and in the presence of a large bias voltage each decoherence event transfers a certain number of electrons through the device. We calculate the counting statistics of the transferred charges, finding a crossover from sub-Poissonian to super-Poissonian statistics with increasing ratio of tunnel and decoherence rates.
Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions, with properties that are similar to the nitrogen-vacancy defect in diamond. We report experiments on 4H-SiC that investigate all-optical addres sing of spin states with the zero-phonon-line transitions. Our magneto-spectroscopy results identify the spin $S=1$ structure of the ground and excited state, and a role for decay via intersystem crossing. We use these results for demonstrating coherent population trapping of spin states with divacancy ensembles that have particular orientations in the SiC crystal.
In high-purity n-type GaAs under strong magnetic field, we are able to isolate a lambda system composed of two Zeeman states of neutral-donor bound electrons and the lowest Zeeman state of bound excitons. When the two-photon detuning of this system i s zero, we observe a pronounced dip in the excited-state photoluminescence indicating the creation of the coherent population-trapped state. Our data are consistent with a steady-state three-level density-matrix model. The observation of coherent population trapping in GaAs indicates that this and similar semiconductor systems could be used for various EIT-type experiments.
Coherent population trapping (CPT) refers to the steady-state trapping of population in a coherent superposition of two ground states which are coupled by coherent optical fields to an intermediate state in a three-level atomic system. Recently, CPT has been observed in an ensemble of donor bound spins in GaAs and in single nitrogen vacancy centers in diamond by using a fluorescence technique. Here we report the demonstration of CPT of an electron spin in a single quantum dot (QD) charged with one electron.
Hyperfine interactions with a nuclear spin environment fundamentally limit the coherence properties of confined electron spins in the solid-state. Here, we show that a quantum interference effect in optical absorption from two electronic spin states of a solid-state emitter can be used to prepare the surrounding environment of nuclear spins in well-defined states, thereby suppressing electronic spin dephasing. The evolution of the coupled electron-nuclei system into a coherent population trapping state by optical excitation induced nuclear spin diffusion can be described in terms of Levy flights, in close analogy with sub-recoil laser cooling of atoms. The large difference in electronic and nuclear time scales simultaneously allow for a measurement of the magnetic field produced by nuclear spins, making it possible to turn the lasers that cause the anomalous spin diffusion process off when the strength of the resonance fluorescence reveals that the nuclear spins are in the desired narrow state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا