ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange Biasing of the Ferromagnetic Semiconductor (Ga,Mn)As by MnO

171   0   0.0 ( 0 )
 نشر من قبل Nitin Samarth
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an overview of progress on the exchange biasing of a ferromagnetic semiconductor (Ga1-xMnxAs) by proximity to an antiferromagnetic oxide layer (MnO). We present a detailed characterization study of the antiferromagnetic layer using Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, transmission electron microscopy, and x-ray reflection. In addition, we describe the variation of the exchange and coercive fields with temperature and cooling field for multiple samples.



قيم البحث

اقرأ أيضاً

378 - P. Nemec , V. Novak , N. Tesarova 2012
(Ga,Mn)As is at the forefront of research exploring the synergy of magnetism with the physics and technology of semiconductors, and has led to discoveries of new spin-dependent phenomena and functionalities applicable to a wide range of material syst ems. Its recognition and utility as an ideal model material for spintronics research has been undermined by the large scatter in reported semiconducting doping trends and micromagnetic parameters. In this paper we establish these basic material characteristics by individually optimizing the highly non-equilibrium synthesis for each Mn-doping level and by simultaneously determining all micromagnetic parameters from one set of magneto-optical pump-and-probe measurements. Our (Ga,Mn)As thin-film epilayers, spannig the wide range of accessible dopings, have sharp thermodynamic Curie point singularities typical of uniform magnetic systems. The materials show systematic trends of increasing magnetization, carrier density, and Curie temperature (reaching 188 K) with increasing doping, and monotonous doping dependence of the Gilbert damping constant of ~0.1-0.01 and the spin stiffness of ~2-3 meVnm^2. These results render (Ga,Mn)As well controlled degenerate semiconductor with basic magnetic characteristics comparable to common band ferromagnets.
371 - K. F. Eid , M. B. Stone , K. C. Ku 2003
We demonstrate the exchange coupling of a ferromagnetic semiconductor (Ga1-xMnxAs) with an overgrown antiferromagnet (MnO). Unlike most conventional exchange biased systems, the blocking temperature of the antiferromagnet (T_B = 48 +- 2 K) and the Cu rie temperature of the ferromagnet (T_C = 55.1 +- 0.2 K) are comparable. The resulting exchange bias manifests itself as a clear shift in the magnetization hysteresis loop when the bilayer is cooled in the presence of an applied magnetic field and an enhancement of the coercive field.
We report single-color, time resolved magneto-optical measurements in ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control of the magnetization precession by applying two successive ultrashort laser pulses. The magnetic fiel d and temperature dependent experiments reveal the collective Mn-moment nature of the oscillatory part of the time-dependent Kerr rotation, as well as contributions to the magneto-optical signal that are not connected with the magnetization dynamics.
Electrical current manipulation of magnetization switching through spin-orbital coupling in ferromagnetic semiconductor (Ga,Mn)As Hall bar devices has been investigated. The efficiency of the current-controlled magnetization switching is found to be sensitive to the orientation of the current with respect to the crystalline axes. The dependence of the spin-orbit effective magnetic field on the direction and magnitude of the current is determined from the shifts in the magnetization switching angle. We find that the strain induced effective magnetic field is about three times as large as the Rashba induced magnetic field in our GaMnAs devices.
A small fraction of phosphorus (up to 10 %) was incorporated in ferromagnetic (Ga,Mn)As epilayers grown on a GaAs substrate. P incorporation allows reducing the epitaxial strain or even change its sign, resulting in strong modifications of the magnet ic anisotropy. In particular a reorientation of the easy axis toward the growth direction is observed for high P concentration. It offers an interesting alternative to the metamorphic approach, in particular for magnetization reversal experiments where epitaxial defects stongly affect the domain wall propagation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا