ﻻ يوجد ملخص باللغة العربية
We report single-color, time resolved magneto-optical measurements in ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control of the magnetization precession by applying two successive ultrashort laser pulses. The magnetic field and temperature dependent experiments reveal the collective Mn-moment nature of the oscillatory part of the time-dependent Kerr rotation, as well as contributions to the magneto-optical signal that are not connected with the magnetization dynamics.
We report dynamic control of magnetization precession by light alone. A ferromagnetic (Ga,Mn)As epilayer was used for experiments. Amplitude of precession was modulated to a large extent by tuning the time interval between two successive optical pump
Non-thermal laser induced spin excitations, recently discovered in conventional oxide and metal ferromagnets, open unprecedented opportunities for research and applications of ultrafast optical manipulation of magnetic systems. Ferromagnetic semicond
The laser-induced precession of magnetization in (Ga,Mn)As samples with different magnetic anisotropy was studied by the time-resolved magneto-optical method. We observed that the dependence of the precession amplitude on the external magnetic field
We show that the magnetization of a thin ferromagnetic (Ga,Mn)As layer can be modulated by picosecond acoustic pulses. In this approach a picosecond strain pulse injected into the structure induces a tilt of the magnetization vector M, followed by th
Electrical current manipulation of magnetization switching through spin-orbital coupling in ferromagnetic semiconductor (Ga,Mn)As Hall bar devices has been investigated. The efficiency of the current-controlled magnetization switching is found to be