ترغب بنشر مسار تعليمي؟ اضغط هنا

Inversion of two-band superconductivity at the critical electron doping of (Mg,Al)B$_2$

76   0   0.0 ( 0 )
 نشر من قبل Lance Cooley
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron energy-loss spectroscopy (EELS) was combined with heat capacity measurements to follow the change of superconductivity with systematic Al doping of MgB$_2$. By using x-ray diffraction and Vegards law to assess the actual Al content in the samples, changes in behavior were found to be much more in agreement with theoretical predictions than in earlier studies. EELS data show that $sigma$-band hole states disappear above 33% Al, approximately the composition at which the $sigma$ band Fermi surface is predicted to lose its cylindrical shape in reciprocal space and break apart into ellipsoidal pockets. At this composition, the $sigma$ gap obtained from the heat capacity data falls to the level of the $pi$ gap, implying that band filling results in the loss of strong superconductivity on the $sigma$ band. However, superconductivity is not quenched completely, but persists with $T_c < 7$ K up to about 55% Al, the Al concentration at which the entire $sigma$ band is predicted to fall below the Fermi surface. Since, in the region $0.33 alt x alt 0.55$, only the $pi$ band has appreciable density of states, it becomes the stronger of the 2 bands, thus inverting the 2-band hierarchy of MgB$_2$.



قيم البحث

اقرأ أيضاً

158 - P. Postorino 2001
Raman and infrared absorption spectra of Mg(1-x)Al(x)B(2) have been collected for 0<x<0.5 in the spectral range of optical phonons. The x-dependence of the peak frequency, the width and the intensity of the observed Raman lines has been carefully ana lized. A peculiar x-dependence of the optical modes is pointed out for two different Al doping ranges. In particular the onset of the high-doping structural phase previously observed in diffraction measurements is marked by the appearence of new spectral components at high frequencies. A connection between the whole of our results and the observed suppression of superconductivity in the high doping region is established.
In two-dimensional multivalley semiconductors, at low doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, t he electron-electron interaction results in an enhancement of the superconducting critical temperature. By performing first principles calculations beyond density functional theory, we prove that this effect accounts for the unconventional doping-dependence of the superconducting transition-temperature (T$_c$) and of the magnetic susceptibility measured in Li$_x$ZrNCl. By finding the conditions for a maximal T$_c$ enhancement, we show how weakly-doped two-dimensional semiconductors provide a route towards high T$_c$ superconductivity.
Unlike the widely studied $s$-type two-gap superconductor MgB$_2$, the chemically similar compounds ZrB$_2$ and HfB$_2$ do not superconduct above 1 K. Yet, it has been shown that small amounts of self- or extrinsic doping (in particular with vanadium ), can induce superconductivity in these materials. Based on results of different macro- and microscopic measurements, including magnetometry, nuclear magnetic resonance (NMR), resistivity, and muon-spin rotation ($mu$SR), we present a comparative study of Zr$_{0.96}$V$_{0.04}$B$_2$ and Hf$_{0.97}$V$_{0.03}$B$_2$. Their key magnetic and superconducting features are determined and the results are considered within the theoretical framework of multiband superconductivity proposed for MgB$_2$. Detailed Fermi surface (FS) and electronic structure calculations reveal the difference between MgB$_2$ and transition-metal diborides.
Polarization-dependent x-ray absorption spectroscopy at the B 1s edge of single-crystalline Mg(x)Al(1-x)B(2) reveals a strongly anisotropic electronic structure near the Fermi energy. Comparing spectra for superconducting compounds (x=0.9, 1.0) with those for the non-superconductor x=0.0 gives direct evidence on the importance of an in-plane spectral feature crossing E_F for the superconducting properties of the diborides. Good agreement is found with the projected B 2p density of states from LDA band structure calculations.
In doped SrTiO$_{3}$ superconductivity persists down to an exceptionally low concentration of mobile electrons. This restricts the relevant energy window and possible pairing scenarios. We present a study of quantum oscillations and superconducting t ransition temperature, $T_{c}$ as the carrier density is tuned from $10^{17}$ to $10^{20}$ $cm^{-3}$ and identify two critical doping levels corresponding to the filling thresholds of the upper bands. At the first critical doping, which separates the single-band and the two-band superconducting regimes in oxygen-deficient samples, the steady increase of T$_{c}$ with carrier concentration suddenly stops. Near this doping level, the energy dispersion in the lowest band displays a downward deviation from parabolic behavior. The results impose new constraints for microscopic pairing scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا