ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal enhancement of superconductivity in two dimensional semiconductors at low doping by electron-electron interaction

104   0   0.0 ( 0 )
 نشر من قبل Matteo Calandra
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In two-dimensional multivalley semiconductors, at low doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. By performing first principles calculations beyond density functional theory, we prove that this effect accounts for the unconventional doping-dependence of the superconducting transition-temperature (T$_c$) and of the magnetic susceptibility measured in Li$_x$ZrNCl. By finding the conditions for a maximal T$_c$ enhancement, we show how weakly-doped two-dimensional semiconductors provide a route towards high T$_c$ superconductivity.



قيم البحث

اقرأ أيضاً

The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the case, exchange tends to enhance the electron-phonon interaction, although the motivatio ns for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in Li$_x$ZrNCl and that much larger T$_c$s could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity.
Atom scattering is becoming recognized as a sensitive probe of the electron-phonon interaction parameter $lambda$ at metal and metal-overlayer surfaces. Here, the theory is developed linking $lambda$ to the thermal attenuation of atom scattering spec tra (in particular, the Debye-Waller factor), to conducting materials of different dimensions, from quasi-one dimensional systems such as W(110):H(1$times$1) and Bi(114), to quasi-two dimensional layered chalcogenides and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of $lambda$ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition the number of layers contributing to the electron-phonon interaction that is measured in an atom surface collision.
The discovery of two-dimensional electron gases (2DEGs) at the interface between two insulating complex oxides, such as LaAlO3 (LAO) or gamma-Al2O3 (GAO) epitaxially grown on SrTiO3 (STO) 1,2, provides an opportunity for developing all-oxide electron ic devices3,4. These 2DEGs at complex oxide interfaces involve many-body interactions and give rise to a rich set of phenomena5, for example, superconductivity6, magnetism7,8, tunable metal-insulator transitions9, and phase separation10. However, large enhancement of the interfacial electron mobility remains a major and long-standing challenge for fundamental as well as applied research of complex oxides11-15. Here, we inserted a single unit cell insulating layer of polar La1-xSrxMnO3 (x=0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 created at room temperature. We find that the electron mobility of the interfacial 2DEG is enhanced by more than two orders of magnitude. Our in-situ and resonant x-ray spectroscopic in addition to transmission electron microscopy results indicate that the manganite layer undergoes unambiguous electronic reconstruction and leads to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits clear Shubnikov-de Haas oscillations and the initial manifestation of the quantum Hall effect, demonstrating an unprecedented high-mobility and low electron density oxide 2DEG system. These findings open new avenues for oxide electronics.
Electron energy-loss spectroscopy (EELS) was combined with heat capacity measurements to follow the change of superconductivity with systematic Al doping of MgB$_2$. By using x-ray diffraction and Vegards law to assess the actual Al content in the sa mples, changes in behavior were found to be much more in agreement with theoretical predictions than in earlier studies. EELS data show that $sigma$-band hole states disappear above 33% Al, approximately the composition at which the $sigma$ band Fermi surface is predicted to lose its cylindrical shape in reciprocal space and break apart into ellipsoidal pockets. At this composition, the $sigma$ gap obtained from the heat capacity data falls to the level of the $pi$ gap, implying that band filling results in the loss of strong superconductivity on the $sigma$ band. However, superconductivity is not quenched completely, but persists with $T_c < 7$ K up to about 55% Al, the Al concentration at which the entire $sigma$ band is predicted to fall below the Fermi surface. Since, in the region $0.33 alt x alt 0.55$, only the $pi$ band has appreciable density of states, it becomes the stronger of the 2 bands, thus inverting the 2-band hierarchy of MgB$_2$.
69 - H. Jang , S. Asano , M. Fujita 2017
One of the central questions in the cuprate research is the nature of the normal state which develops into high temperature superconductivity (HTSC). In the normal state of hole-doped cuprates, the existence of charge density wave (CDW) is expected t o shed light on the mechanism of HTSC. With evidence emerging for CDW order in the electron-doped cuprates, the CDW would be thought to be a universal phenomenon in high-$T_c$ cuprates. However, the CDW phenomena in electron-doped cuprate are quite different than those in hole-doped cuprates. Here we study the nature of the putative CDW in an electron-doped cuprate through direct comparisons between as-grown and post-annealed Nd$_{1.86}$Ce$_{0.14}$CuO$_4$ (NCCO) single crystals using Cu $L_3$-edge resonant soft x-ray scattering (RSXS) and angle resolved photoemission spectroscopy (ARPES). The RSXS result reveals that the non-superconducting NCCO shows the same reflections at the wavevector (~1/4, 0, $l$) as like the reported superconducting NCCO. This superconductivity-insensitive signal is quite different with the characteristics of the CDW reflection in hole-doped cuprates. Moreover, the ARPES result suggests that the fermiology cannot account for such wavevector. These results call into question the universality of CDW phenomenon in the cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا