ﻻ يوجد ملخص باللغة العربية
Spin correlations in the paramagnetic phase of lanthanum cuprate have been studied using polarized neutron scattering, with two important results. First, the temperature dependence of the characteristic energy scale of the fluctuations and the amplitude of the neutron structure factor are shown to be in quantitative agreement with the predictions of the quantum non-linear sigma model. Secondly, comparison of a high-temperature series expansion of the equal-time spin correlations with the diffuse neutron intensity provides definitive experimental evidence for ring exchange.
It is shown that the experiments of A.M. Toader, J. P. Goff, M. Roger, N. Shannon, J. R. Stewart, and M. Enderle, Phys. Rev. Lett. 94, 197202 (2005) do not provide definitive experimental evidence for ring exchange terms in the Hamiltonian of La2CuO4, even though such terms may be present.
Light hole doping of lanthanum cuprate strongly suppresses the onset of antiferromagnetic (AF) order. Surprisingly, it simultaneously suppresses the extrapolated zero temperature sub-lattice magnetization. 139La NQR results in lightly Li-doped lantha
139La NMR and relaxation measurements have been performed on La{1.8-x}Eu{0.2}Sr{x}CuO{4} (x = 0.13 and 0.2) single crystals. The temperature dependence of the 139La NMR spectra in all the structural phases (HTT -> LTO -> LTT) reveals the non-vanishin
A microscopic theory of superconductivity is formulated within an effective $p$-$d$ Hubbard model for a CuO2 plane. By applying the Mori-type projection technique, the Dyson equation is derived for the Green functions in terms of Hubbard operators. T
We show that soft core bosons in two dimensions with a ring exchange term exhibit a tendency for phase separation. This observation suggests that the thermodynamic stability of normal bose liquid phases driven by ring exchange should be carefully examined.