ﻻ يوجد ملخص باللغة العربية
139La NMR and relaxation measurements have been performed on La{1.8-x}Eu{0.2}Sr{x}CuO{4} (x = 0.13 and 0.2) single crystals. The temperature dependence of the 139La NMR spectra in all the structural phases (HTT -> LTO -> LTT) reveals the non-vanishing tilt angle of the CuO6 octahedra in the HTT phase, opposed to the case of La{2-x}Sr{x}CuO{4} where the tilt angle disappears immediately above the transition. Since 139La relaxation data provide evidence of the thermodynamic critical fluctuations associated with the structural phase transitions, HTT -> LTO and LTO -> LTT, we conclude that the structural transitions in Eu-doped La{2-x}Sr{x}CuO{4} should be of the order-disorder type rather than of the displacive type observed in La{2-x}Sr{x}CuO{4}. The change of the nature of the structural transitions caused by doping Eu appears to be consistent with the LTO -> LTT transition that is absent in La{2-x}Sr{x}CuO{4}.
Light hole doping of lanthanum cuprate strongly suppresses the onset of antiferromagnetic (AF) order. Surprisingly, it simultaneously suppresses the extrapolated zero temperature sub-lattice magnetization. 139La NQR results in lightly Li-doped lantha
High Tc superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been obse
Spin correlations in the paramagnetic phase of lanthanum cuprate have been studied using polarized neutron scattering, with two important results. First, the temperature dependence of the characteristic energy scale of the fluctuations and the amplit
AgF$_2$ is a correlated charge-transfer insulator with properties remarkably similar to insulating cuprates which have raised hope that it may lead to a new family of unconventional superconductors upon doping. We use ab initio computations to study
Electron-doped and hole-doped superconducting cuprates exhibit a symmetric phase diagram as a function of doping. This symmetry is however only approximate. Indeed, electron-doped cuprates become superconductors only after a specific annealing proces