ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectric effect in superconducting nanostructures

117   0   0.0 ( 0 )
 نشر من قبل Andrei Shelankov
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study thermoelectric effects in superconducting nanobridges and demonstrate that the magnitude of these effects can be comparable or even larger than that for a macroscopic superconducting circuit. The reason is related to a possibility to have very large gradients of electron temperature within the nanobridge. The corresponding heat conductivity problems are considered. It is shown that the nanoscale devices allow one to get rid of masking effects related to spurious magnetic fields.

قيم البحث

اقرأ أيضاً

We demonstrate that thermoelectric currents in superconducting bilayers with a spin-active interface are controlled by the two competing processes. On one hand, spin-sensitive quasiparticle scattering at such interface generates electron-hole imbalan ce and yields orders-of-magnitude enhancement of the thermoelectric effect in the system. On the other hand, this electron-hole imbalance gets suppressed in the superconductor bulk due to electron scattering on non-magnetic impurities. As a result, large thermoelectric currents can only flow in the vicinity of the spin-active interface and decay away from this interface at a distance exceeding the electron elastic mean free path $ell$. The magnitude of the thermoelectric effect reaches its maximum provided $ell$ becomes of order of the total bilayer thickness.
81 - A. Ozaeta 2014
This PhD thesis is divided in 6 chapters. In chapter 1 we introduce basic superconducting phenomena. Such as, the BCS theory, the Andreev reflection and the proximity effect, and the charge current transport in superconducting tunnel junctions. In ch apter 2 we present the Keldysh nonequilibrium Green function formalism used to obtain the results of this thesis, together with clarifying examples corresponding to simple junctions. In chapter 3, the subgap transport properties of a SIF structure are studied. We devote chapter 4 to the study of thermal transport in superconducting nanohybrid structures. In chapter 5, we develop a general theory for the microwave-irradiated high-transmittance superconducting quantum point contact (SQPC), which consists of a thin constriction of superconducting material in which the Andreev states can be observed. The thesis concludes with a summary of the obtained results in chapter 6. The detailed derivation of the quasiclassical equations is presented in the appendix.
Attaching a superconductor in good contact with a normal metal makes rise to a proximity effect where the superconducting correlations leak into the normal metal. An additional contact close to the first one makes it possible to carry a supercurrent through the metal. Forcing this supercurrent flow along with an additional quasiparticle current from one or many normal-metal reservoirs makes rise to many interesting effects. The supercurrent can be used to tune the local energy distribution function of the electrons. This mechanism also leads to finite thermoelectric effects even in the presence of electron-hole symmetry. Here we review these effects and discuss to which extent the existing observations of thermoelectric effects in metallic samples can be explained through the use of the dirty-limit quasiclassical theory.
Suspended superconducting nanostructures of MoRe $50%/50%$ by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO$_2$ sacrificial layer. Suspe nded superconducting channels as narrow as $50,rm{nm}$ and length $3,rm{mu m}$ have a critical temperature of $approx 6.5,rm{K}$, which can increase by $0.5rm{K}$ upon annealing at $400,^{circ}mathrm{C}$. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel width reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.
Employing quasiclassical theory of superconductivity combined with Keldysh technique we investigate large thermoelectric effect in multiterminal ballistic normal-superconducting (NS) hybrid structures. We argue that this effect is caused by electron- hole asymmetry generated by coherent Andreev reflection of quasiparticles at interfaces of two different superconductors with non-zero phase difference. Within our model we derive a general expression for thermoelectric voltages $V_{T1,2}$ induced in two different normal terminals exposed to a thermal gradient. Our results apply at any temperature difference in the subgap regime and allow to explicitly analyze both temperature and phase dependencies of $V_{T1,2}$ demonstrating that in general there exists no fundamental relation between these voltages and the equilibrium Josephson current in SNS junctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا