ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport phenomena in superconducting hybrid nanostructures

132   0   0.0 ( 0 )
 نشر من قبل Asier Ozaeta
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Ozaeta




اسأل ChatGPT حول البحث

This PhD thesis is divided in 6 chapters. In chapter 1 we introduce basic superconducting phenomena. Such as, the BCS theory, the Andreev reflection and the proximity effect, and the charge current transport in superconducting tunnel junctions. In chapter 2 we present the Keldysh nonequilibrium Green function formalism used to obtain the results of this thesis, together with clarifying examples corresponding to simple junctions. In chapter 3, the subgap transport properties of a SIF structure are studied. We devote chapter 4 to the study of thermal transport in superconducting nanohybrid structures. In chapter 5, we develop a general theory for the microwave-irradiated high-transmittance superconducting quantum point contact (SQPC), which consists of a thin constriction of superconducting material in which the Andreev states can be observed. The thesis concludes with a summary of the obtained results in chapter 6. The detailed derivation of the quasiclassical equations is presented in the appendix.



قيم البحث

اقرأ أيضاً

We describe the transport properties of mesoscopic devices based on the two dimensional electron gas (2DEG) present at the LaAlO$_3$/SrTiO$_3$ interface. Bridges with lateral dimensions down to 500~nm were realized using electron beam lithography. Th eir detailed characterization shows that processing and confinement do not alter the transport parameters of the 2DEG. The devices exhibit superconducting behavior tunable by electric field effect. In the normal state, we measured universal conductance fluctuations, signature of phase-coherent transport in small structures. The achievement of reliable lateral confinement of the 2DEG opens the way to the realization of quantum electronic devices at the LaAlO$_3$/SrTiO$_3$ interface.
125 - V. V. Baranov , A. G. Balanov , 2011
The current-voltage characteristics of long and narrow superconducting channels are investigated using the time-dependent Ginzburg-Landau equations for complex order parameter. We found out that the steps in the current voltage characteristic can be associated with bifurcations of either steady or oscillatory solution. We revealed typical instabilities which induced the singularities in current-voltage characteristics, and analytically estimated period of oscillations and average voltage in the vicinity of the critical currents. Our results show that these bifurcations can substantially complicate dynamics of the order parameter and eventually lead to appearance of such phenomena as multistability and chaos. The discussed bifurcation phenomena sheds a light on some recent experimental findings.
In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybri d tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.
203 - V. V. Baranov , A. G. Balanov , 2011
We have investigated the properties of the resistive state of the narrow superconducting channel of the length L/xi=10.88 on the basis of the time-dependent Ginzburg-Landau model. We have demonstrated that the bifurcation points of the time-dependent Ginzburg-Landau equations cause a number of singularities of the current-voltage characteristic of the channel. We have analytically estimated the averaged voltage and the period of the oscillating solution for the relatively small currents. We have also found the range of currents where the system possesses the chaotic behavior.
108 - E.V. Bezuglyi , E.N. Bratus , 2011
We solve the coherent multiple Andreev reflection (MAR) problem and calculate current-voltage characteristics (IVCs) for Josephson SINIS junctions, where S are local-equilibrium superconducting reservoirs, I denotes tunnel barriers, and N is a short diffusive normal wire, the length of which is much smaller than the coherence length, and the resistance is much smaller than the resistance of the tunnel barriers. The charge transport regime in such junctions qualitatively depends on a characteristic value gamma = Delta tau_d of relative phase shifts between the electrons and retro-reflected holes accumulated during the dwell time tau_d. In the limit of small electron-hole dephasing gamma << 1, our solution recovers a known formula for a short mesoscopic connector extended to the MAR regime. At large dephasing, the subharmonic gap structure in the IVC scales with 1/ gamma, which thus plays the role of an effective tunneling parameter. In this limit, the even gap subharmonics are resonantly enhanced, and the IVC exhibits portions with negative differential resistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا