ﻻ يوجد ملخص باللغة العربية
Motivated by the drying pattern experiment by Yamazaki and Mizuguchi[J. Phys. Soc. Jpn. {bf 69} (2000) 2387], we propose the dynamics of sweeping interface, in which material distributed over a region is swept by a moving interface. A model based on a phase field is constructed and results of numerical simulations are presented for one and two dimensions. Relevance of the present model to the drying experiment is discussed.
Based on the invasion percolation model, a lattice model for the sweeping interface dynamics is constructed to describe the pattern forming process by a sweeping interface upon drying the water-granule mixture. The model is shown to produce labyrinth
Phase ordering dynamics of the (2+1)- and (3+1)-dimensional $phi^4$ theory with Hamiltonian equations of motion is investigated numerically. Dynamic scaling is confirmed. The dynamic exponent $z$ is different from that of the Ising model with dynamic
Recent experiments have shown how nematically-ordered tactoid shaped actin droplets can be reorganized and divided by the action of myosin molecular motors. In this paper, we consider how similar morphological changes can potentially be achieved unde
We investigate the Rubinstein-Duke model for polymer reptation by means of density-matrix renormalization group techniques both in absence and presence of a driving field. In the former case the renewal time tau and the diffusion coefficient D are ca
We report on the residence times of capillary waves above a given height $h$ and on the typical waiting time in between such fluctuations. The measurements were made on phase separated colloid-polymer systems by laser scanning confocal microscopy. Du