ﻻ يوجد ملخص باللغة العربية
We report electrical control of the spin polarization of InAs/GaAs self-assembled quantum dots (QDs) at room temperature. This is achieved by electrical injection of spin-polarized electrons from an Fe Schottky contact. The circular polarization of the QD electroluminescence shows that a 5% electron spin polarization is obtained in the InAs QDs at 300 K, which is remarkably insensitive to temperature. This is attributed to suppression of the spin relaxation mechanisms in the QDs due to reduced dimensionality. These results demonstrate that practical regimes of spin-based operation are clearly attainable in solid state semiconductor devices.
To understand and optimize optical spin initialization in room temperature CdSe nanocrystal quantum dots (NCQDs) we studied the dependence of the time-resolved Faraday rotation signal on pump energy $E_p$ in a series of NCQD samples with different si
We inject spin-polarized electrons from an Fe/MgO tunnel barrier contact into n-type Ge(001) substrates with electron densities 2e16 < n < 8e17 cm-3, and electrically detect the resulting spin accumulation using three-terminal Hanle measurements. We
Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a source and a we
To mitigate climate change, our global society is harnessing direct (solar irradiation) and indirect (wind/water flow) sources of renewable electrical power generation. Emerging direct sources include current-producing thermal gradients in thermoelec
Disordered films have gained intense interest because of their possibility for spintronics applications by benefiting from other exotic transport properties. Here, we have fabricated disordered Gd-alloyed Bi_x Se_(1-x) (BSG) thin films by magnetron s