ﻻ يوجد ملخص باللغة العربية
We analyze the evolution of Sznajd Model with synchronous updating in several complex networks. Similar to the model on square lattice, we have found a transition between the state with no-consensus and the state with complete consensus in several complex networks. Furthermore, by adjusting the network parameters, we find that a large clustering coefficient favors development of a consensus. In particular, in the limit of large system size with the initial concentration p=0.5 of opinion +1, a consensus seems to be never reached for the Watts-Strogatz small-world network, when we fix the connectivity k and the rewiring probability p_s; nor for the scale-free network, when we fix the minimum node degree m and the triad formation step probability p_t.
We present a renormalization approach to solve the Sznajd opinion formation model on complex networks. For the case of two opinions, we present an expression of the probability of reaching consensus for a given opinion as a function of the initial fr
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to di
We analyze the Sznajd opinion formation model, where a pair of neighboring individuals sharing the same opinion on a square lattice convince its six neighbors to adopt their opinions, when a fraction of the individuals is updated according to the usu
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top
Many sociological networks, as well as biological and technological ones, can be represented in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking place on top of them can be very much influenced by this t