ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometrical enhancement of the proximity effect in quantum wires with extended superconducting tunnel contacts

157   0   0.0 ( 0 )
 نشر من قبل Giorgos Fagas
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Andreev reflection in a ballistic one-dimensional channel coupled in parallel to a superconductor via a tunnel barrier of finite length $L$. The dependence of the low-energy Andreev reflection probability $R_A$ on $L$ reveals the existence of a characteristic length scale $xi_N$ beyond which $R_A(L)$ is enhanced up to unity despite the low interfacial transparency. The Andreev reflection enhancement is due to the strong mixing of particle and hole states that builds up in contacts exceeding the coherence length $xi_N$, leading to a small energy gap (minigap) in the density of states of the normal system. The role of the geometry of such hybrid contacts is discussed in the context of the experimental observation of zero-bias Andreev anomalies in the resistance of extended carbon nanotube/superconductor junctions in field effect transistor setups.



قيم البحث

اقرأ أيضاً

We study the superconducting proximity effect in a quantum wire with broken time-reversal (TR) symmetry connected to a conventional superconductor. We consider the situation of a strong TR-symmetry breaking, so that Cooper pairs entering the wire fro m the superconductor are immediately destroyed. Nevertheless, some traces of the proximity effect survive: for example, the local electronic density of states (LDOS) is influenced by the proximity to the superconductor, provided that localization effects are taken into account. With the help of the supersymmetric sigma model, we calculate the average LDOS in such a system. The LDOS in the wire is strongly modified close to the interface with the superconductor at energies near the Fermi level. The relevant distances from the interface are of the order of the localization length, and the size of the energy window around the Fermi level is of the order of the mean level spacing at the localization length. Remarkably, the sign of the effect is sensitive to the way the TR symmetry is broken: In the spin-symmetric case (orbital magnetic field), the LDOS is depleted near the Fermi energy, whereas for the broken spin symmetry (magnetic impurities), the LDOS at the Fermi energy is enhanced.
135 - Y. N. Fang , S. W. Li , L. C. Wang 2014
The proximity effect (PE) between superconductor and confined electrons can induce the effective pairing phenomena of electrons in nanowire or quantum dot (QD). Through interpreting the PE as an exchange of virtually quasi-excitation in a largely gap ped superconductor, we found that there exists another induced dynamic process. Unlike the effective pairing that mixes the QD electron states coherently, this extra process leads to dephasing of the QD. In a case study, the dephasing time is inversely proportional to the Coulomb interaction strength between two electrons in the QD. Further theoretical investigations imply that this dephasing effect can decrease the quality of the zero temperature mesoscopic electron transportation measurements by lowering and broadening the corresponding differential conductance peaks.
One-dimensional Majorana modes can be obtained as boundary excitations of topologically nontrivial two-dimensional topological superconductors. Here, we propose instead the bottom-up creation of one-dimensional, counterpropagating, and dispersive Maj orana modes as bulk excitations of a periodic chain of partially-overlapping, zero-dimensional Majorana modes in proximitized quantum nanowires via periodically-modulated magnetic fields. These dispersive one-dimensional Majorana modes can be either massive or massless. Massless Majorana modes are pseudohelical, having opposite Majorana pseudospin, and realize emergent quantum mechanical supersymmetry. The system exhibits extended supersymmetry with central extensions and with spontaneous partial breaking. We identify the massless Majorana fermions as Goldstinos, i.e., the Nambu-Goldstone fermions associated with the spontaneous breaking of supersymmetry. The experimental fingerprint of massless Majorana modes and supersymmetry is the presence of a finite zero-bias peak, which is generally not expected for Majorana modes with a finite overlap and localized at a finite distance. Moreover, slowly varying magnetic fields can realize an adiabatic Majorana pump which can be used as a dynamically probe of topological superconductivity.
Superconductors are known to be excellent thermal insulators at low temperature owing to the presence of the energy gap in their density of states (DOS). In this context, the superconducting textit{proximity effect} allows to tune the local DOS of a metallic wire by controlling the phase bias ($varphi$) imposed across it. As a result, the wire thermal conductance can be tuned over several orders of magnitude by phase manipulation. Despite strong implications in nanoscale heat management, experimental proofs of phase-driven control of thermal transport in superconducting proximitized nanostructures are still very limited. Here, we report the experimental demonstration of efficient heat current control by phase tuning the superconducting proximity effect. This is achieved by exploiting the magnetic flux-driven manipulation of the DOS of a quasi one-dimensional aluminum nanowire forming a weal-link embedded in a superconducting ring. Our thermal superconducting quantum interference transistor (T-SQUIPT) shows temperature modulations up to $sim 16$ mK yielding a temperature-to-flux transfer function as large as $sim 60$ mK/$Phi_0$. Yet, phase-slip transitions occurring in the nanowire Josephson junction induce a hysteretic dependence of its local DOS on the direction of the applied magnetic field. Thus, we also prove the operation of the T-SQUIPT as a phase-tunable textit{thermal memory}, where the information is encoded in the temperature of the metallic mesoscopic island. Besides their relevance in quantum physics, our results are pivotal for the design of innovative coherent caloritronics devices such as heat valves and temperature amplifiers suitable for thermal logic architectures.
We discuss the charge and the spin tunneling currents between two Bardeen-Cooper-Schrieffer (BCS) superconductors, where one density of states is spin-split. In the presence of a large temperature bias across the junction, we predict the generation o f a spin-polarized thermoelectric current. This thermo-spin effect is the result of a spontaneous particle-hole symmetry breaking in the absence of a polarizing tunnel barrier. The two spin components, which move in opposite directions, generate a spin current larger than the purely polarized case when the thermo-active component dominates over the dissipative one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا