ﻻ يوجد ملخص باللغة العربية
Single electron charging in an individual InAs quantum dot was observed by electrostatic force measurements with an atomic force microscope (AFM). The resonant frequency shift and the dissipated energy of an oscillating AFM cantilever were measured as a function of the tip-back electrode voltage and the resulting spectra show distinct jumps when the tip was positioned above the dot. The observed jumps in the frequency shift, with corresponding peaks in dissipation, are attributed to a single electron tunneling between the dot and the back electrode governed by Coulomb blockade effect, and are consistent with a model based on the free energy of the system. The observed phenomenon may be regarded as the ``force version of the Coulomb blockade effect.
We report on the optical spectroscopy of a single InAs/GaAs quantum dot (QD) doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A^0 whose effective spin J=1
We present the result of a systematic study of the tribological properties of industrial Polytetrafluorethylene (PTFE)-based coatings carried out with an atomic force microscope. A new characterization protocol allowed the reliable and quantitative a
To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM sc
Strong confinement of charges in few electron systems such as in atoms, molecules and quantum dots leads to a spectrum of discrete energy levels that are often shared by several degenerate quantum states. Since the electronic structure is key to unde
Using atomic force microscopy, we have studied the surface structures of high quality molecular beam epitaxy grown (Ga,Mn)As compound. Several samples with different thickness and Mn concentration, as well as a few (Ga,Mn)(As,P) samples have been inv