ﻻ يوجد ملخص باللغة العربية
SrTiO$_3$ thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of perovskite films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained SrTiO$_3$ films were grown on different substrates, providing both compressive and tensile strain. The measured strain-temperature phase diagram is qualitatively consistent with theory, however the increase in the phase transition temperature is much larger than predicted. Due to the epitaxial strain and substrate clamping, the SrTiO$_3$ lattice is tetragonal at all temperatures. The phase transitions involve only changes in internal symmetry. The low temperature phase under tensile strain has a unique structure with orthorhombic $Cmcm$ space group but a tetragonal lattice, an interesting consequence of epitaxial constraint.
We report on the observation of metallic behavior in thin films of oxygen-deficient SrTiO$_3$ - down to 9 unit cells - when coherently strained on (001) SrTiO$_3$ or DyScO$_3$-buffered (001) SrTiO$_3$ substrates. These films have carrier concentratio
Using the model system of ferroelectric domain walls, we explore the effects of long-range dipolar interactions and periodic ordering on the behavior of pinned elastic interfaces. In piezoresponse force microscopy studies of the characteristic roughe
The 2D electron gas (2DEG) formed at the surface of SrTiO$_3$(001) has attracted great interest because of its fascinating physical properties and potential as a novel electronic platform, but up to now has eluded a comprehensible way to tune its pro
The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO$_3$ films with low-temperature mobility exceeding 42,000 cm$^2$V$^{-1}$s$^
Control of thin film stoichiometry is of primary relevance to achieve desired functionality. Pulsed laser deposition ablating from binary-oxide targets (sequential deposition) can be applied to precisely control the film composition, offsetting the i