ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain phase diagram and domain orientation in SrTiO$_3$ thin films

117   0   0.0 ( 0 )
 نشر من قبل Feizhou He
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SrTiO$_3$ thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of perovskite films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained SrTiO$_3$ films were grown on different substrates, providing both compressive and tensile strain. The measured strain-temperature phase diagram is qualitatively consistent with theory, however the increase in the phase transition temperature is much larger than predicted. Due to the epitaxial strain and substrate clamping, the SrTiO$_3$ lattice is tetragonal at all temperatures. The phase transitions involve only changes in internal symmetry. The low temperature phase under tensile strain has a unique structure with orthorhombic $Cmcm$ space group but a tetragonal lattice, an interesting consequence of epitaxial constraint.

قيم البحث

اقرأ أيضاً

We report on the observation of metallic behavior in thin films of oxygen-deficient SrTiO$_3$ - down to 9 unit cells - when coherently strained on (001) SrTiO$_3$ or DyScO$_3$-buffered (001) SrTiO$_3$ substrates. These films have carrier concentratio ns of up to 2$times10^{22}$ cm$^{-3}$ and mobilities of up to 19,000 cm$^2$/V-s at 2 K. There exists a non-conducting layer in our SrTiO$_{3-delta}$ films that is larger in films with lower carrier concentrations. This non-conducting layer can be attributed to a surface depletion layer due to a Fermi level pinning potential. The depletion width, transport, and structural properties are not greatly affected by the insertion of a DyScO$_3$ buffer between the SrTiO$_3$ film and SrTiO$_3$ substrate.
Using the model system of ferroelectric domain walls, we explore the effects of long-range dipolar interactions and periodic ordering on the behavior of pinned elastic interfaces. In piezoresponse force microscopy studies of the characteristic roughe ning of intrinsic 71{deg} stripe domains in BiFeO$_3$ thin films, we find unexpectedly high values of the roughness exponent {zeta} = 0.74 $pm$ 0.10, significantly different from those obtained for artificially written domain walls in this and other ferroelectric materials. The large value of the exponent suggests that a random field-dominated pinning, combined with stronger disorder and strain effects due to the step-bunching morphology of the samples, could be the dominant source of pinning in the system.
The 2D electron gas (2DEG) formed at the surface of SrTiO$_3$(001) has attracted great interest because of its fascinating physical properties and potential as a novel electronic platform, but up to now has eluded a comprehensible way to tune its pro perties. Using angle-resolved photoemission spectroscopy with and without spin detection we here show that the band filling can be controlled by growing thin SrTiO$_3$ films on Nb doped SrTiO$_3$(001) substrates. This results in a single spin-polarised 2D Fermi surface, which bears potential as platform for Majorana physics. Based on our results it can furthermore be concluded that the 2DEG does not extend more than 2 unit cells into the film and that its properties depend on the amount of SrO$_x$ at the surface and possibly the dielectric response of the system.
The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO$_3$ films with low-temperature mobility exceeding 42,000 cm$^2$V$^{-1}$s$^ {-1}$ at low carrier density of 3 x 10$^{17}$ cm$^{-3}$ were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition (LT) where the third band becomes occupied, revealing dominant intra-band scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature-dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- vs intra-band scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO$_3$.
Control of thin film stoichiometry is of primary relevance to achieve desired functionality. Pulsed laser deposition ablating from binary-oxide targets (sequential deposition) can be applied to precisely control the film composition, offsetting the i mportance of growth conditions on the film stoichiometry. In this work, we demonstrate that the cation stoichiometry of SrTiO$_3$ thin films can be finely tuned by sequential deposition from SrO and TiO$_2$ targets. Homoepitaxial SrTiO$_3$ films were deposited at different substrate temperatures and Ti/Sr pulse ratios, allowing the establishment of a growth window for stoichiometric SrTiO$_3$. The growth kinetics and nucleation processes were studied by reflection high-energy electron diffraction and atomic force microscopy, providing information about the growth mode and the degree of off-stoichiometry. At the optimal (stoichiometric) growth conditions, films exhibit atomically flat surfaces, whereas off-stoichiometry is accommodated by crystal defects, 3D islands and/or surface precipitates depending on the substrate temperature and the excess cation. This technique opens the way to precisely control stoichiometry and doping of oxide thin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا