ﻻ يوجد ملخص باللغة العربية
Adsorption of para-Hydrogen on the outer surface of a single fullerene is studied theoretically, by means of ground state Quantum Monte Carlo simulations. We compute energetics and radial density profiles of para-Hydrogen for various coverages on a variety of small fullerenes. The equilibrium adsorbed monolayer is commensurate with the surface of the fullerene; as the chemical potential is increased, a discontinuous change is generally observed, to an incommensurate, compressible layer. Quantum exchanges of Hydrogen molecules are absent in these systems.
We report a surprising result, established by numerical simulations and analytical arguments for a one-dimensional lattice model of random sequential adsorption, that even an arbitrarily small imprecision in the lattice-site localization changes the
In order to realize applications of hydrogen-adsorbed graphene, a main issue is how to control hydrogen adsorption/desorption at room temperature. In this study, we demonstrate the possibility to tune hydrogen adsorption on graphene by applying a gat
We study the effect of interfacial phenomena in two-dimensional perfect and random (or disordered) $q$-state Potts models with continuous phase transitions, using, mainly, Monte Carlo techniques. In particular, for the total interfacial adsorption, t
In this work we extend recent study of the properties of the dense packing of superdisks, by Y. Jiao, F. H. Stillinger and S. Torquato, Phys. Rev. Lett. 100, 245504 (2008), to the jammed state formed by these objects in random sequential adsorption.
The ability of atomic hydrogen to chemisorb on graphene makes the latter a promising material for hydrogen storage. Based on scanning tunneling microscopy techniques, we report on site-selective adsorption of atomic hydrogen on convexly curved region