ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning hydrogen adsorption on graphene by gate voltage

171   0   0.0 ( 0 )
 نشر من قبل Stefan Heun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to realize applications of hydrogen-adsorbed graphene, a main issue is how to control hydrogen adsorption/desorption at room temperature. In this study, we demonstrate the possibility to tune hydrogen adsorption on graphene by applying a gate voltage. The influence of the gate voltage on graphene and its hydrogen adsorption properties was investigated by electrical transport measurements, scanning tunneling microscopy, and density functional theory calculations. We show that more hydrogen adsorbs on graphene with negative gate voltage (p-type doping), compared to that without gate voltage or positive gate voltage (n-type doping). Theoretical calculations explain the gate voltage dependence of hydrogen adsorption as modifications of the adsorption energy and diffusion barrier of hydrogen on graphene by charge doping.

قيم البحث

اقرأ أيضاً

177 - Elsebeth Schroder 2013
The adsorption energies and orientation of methanol on graphene are determined from first-principles density functional calculations. We employ the well-tested vdW-DF method that seamlessly includes dispersion interactions with all of the more close- ranged interactions that result in bonds like the covalent and hydrogen bonds. The adsorption of a single methanol molecule and small methanol clusters on graphene are studied at various coverages. Adsorption in clusters or at high coverages (less than a monolayer) is found to be preferable, with the methanol C-O axis approximately parallel to the plane of graphene. The adsorption energies calculated with vdW-DF are compared with previous DFT-D and MP2-based calculations for single methanol adsorption on flakes of graphene (polycyclic aromatic hydrocarbons). For the high coverage adsorption energies we also find reasonably good agreement with previous desorption measurements.
We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain rangin g from weak to moderately strong. We show that the van der Waals potential can be significantly enhanced by strain, and present applications of our results to the problem of elastic scattering of atoms from graphene. In particular we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative inelastic effects near the surface become of increased importance. Furthermore we introduce a method to independently estimate the Lennard-Jones parameters used in an effective model of He interacting with graphene, and determine how they depend on strain. At short distances, we find that strain tends to reduce the interaction strength by pushing the location of the adsorption potential minima to higher distances above the deformed graphene sheet. This opens up the exciting possibility of mechanically engineering an adsorption potential, with implications for the formation and observation of anisotropic low dimensional superfluid phases.
Magnetic skyrmions can be driven by an applied spin-polarized electron current which exerts a spin-transfer torque on the localized spins constituting the skyrmion. However, the longitudinal dynamics is plagued by the skyrmion Hall effect which cause s the skyrmions to acquire a transverse velocity component. We show how to use spin-orbit interaction to control the skyrmion Hall angle and how the interplay of spin-transfer and spin-orbit torques can lead to a complete suppression of the transverse motion. Since the spin-orbit torques can be controlled all-electronically by a gate voltage, the skyrmion motion can be steered all-electronically on a broad racetrack at high speed and conceptually new writing and gating operations can be realized.
Experiments in gated bilayer graphene with stacking domain walls present topological gapless states protected by no-valley mixing. Here we research these states under gate voltages using atomistic models, which allow us to elucidate their origin. We find that the gate potential controls the layer localization of the two states, which switches non-trivially between layers depending on the applied gate voltage magnitude. We also show how these bilayer gapless states arise from bands of single-layer graphene by analyzing the formation of carbon bonds between layers. Based on this analysis we provide a model Hamiltonian with analytical solutions, which explains the layer localization as a function of the ratio between the applied potential and interlayer hopping. Our results open a route for the manipulation of gapless states in electronic devices, analogous to the proposed writing and reading memories in topological insulators.
Surface plasmons are collective oscillations of electrons in metals or semiconductors enabling confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabri cation, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium-graphene-is amenable to convenient tuning of its electronic and optical properties with gate voltage. Through infrared nano-imaging we explicitly show that common graphene/SiO2/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nm at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and wavelength of these plasmons by gate voltage. We investigated losses in graphene using plasmon interferometry: by exploring real space profiles of plasmon standing waves formed between the tip of our nano-probe and edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merits of our tunable graphene devices surpass that of common metal-based structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا