ترغب بنشر مسار تعليمي؟ اضغط هنا

Hysteresis and Anisotropic Magnetoresistance in Antiferromagnetic $Nd_{2-x}Ce_xCuO_{4}$

48   0   0.0 ( 0 )
 نشر من قبل X. H. Chen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The out-of-plane resistivity ($rho_c$) and magnetoresistivity (MR) are studied in antiferromangetic (AF) $Nd_{2-x}Ce_xCuO_{4}$ single crystals, which have three types of noncollinear antiferromangetic spin structures. The apparent signatures are observed in $rho_c(T)$ measured at the zero-field and 14 T at the spin structure transitions, giving a definite evidence for the itinerant electrons directly coupled to the localized spins. One of striking feature is an anisotropy of the MR with a fourfold symmetry upon rotating the external field (B) within ab plane in the different phases, while twofold symmetry at spin reorientation transition temperatures. The intriguing thermal hysteresis in $rho_c(T,B)$ and magnetic hysteresis in MR are observed at spin reorientation transition temperatures.

قيم البحث

اقرأ أيضاً

We have studied incommensurate spin ordering in single crystal underdoped La_{2-x}Ba_{x}CuO_{4} with x~0.08, 0.05 and 0.025 using neutron scattering techniques. Static incommensurate magnetic order is observed in the La_{2-x}Ba_{x}CuO_{4} (x=0.05 and 0.025) compounds with ordering wavevectors which are rotated by 45 degree about the commensurate (0.5,0.5,0) position, with respect to that in the superconducting x=0.08 material. These spin modulations are one dimensional in the x=0.05 and 0.025 samples, with ordering wavevectors lying along the orthorhombic b* direction. Such a rotation in the orientation of the static spin ordering as a function of increasing Ba doping, from diagonal to collinear, is roughly coincident with the transition from an insulating to a superconducting ground state and is similar to that observed in the related La_{2-x}Sr_{x}CuO_{4} system. This phenomenon is therefore a generic property of underdoped La-214 cuprates.
Ordering process of stripe order in La{2-x}Sr{x}NiO{4} with x being around 1/3 was investigated by neutron diffraction experiments. When the stripe order is formed at high temperature, incommensurability epsilon of the stripe order has a tendency to show the value close to 1/3 for the samples with x at both sides of 1/3. With decreasing temperature, however, epsilon becomes close to the value determined by the linear relation of epsilon = n_h, where n_h is a hole concentration. This variation of the epsilon strongly affects the character of the stripe order through the change of the carrier densities in stripes and antiferromagnetic domains.
We find excitations lower in energy than known phonon modes in underdoped La$_{2-x}$Sr$_x$CuO$_{4+delta}$ (x=0.08), with both inelastic X-Ray scattering (IXS) and inelastic neutron scattering (INS). A non dispersive excitation at 9 meV is identified and is also seen by INS in (La,Nd)$_{2-x}$Sr$_x$CuO$_{4+delta}$, with 40$%$ Nd substitution. INS also identifies a still lower energy dispersive mode at low q in the Nd free sample. These modes are clearly distinct from the longitudinal acoustic phonon and correspond in energy to the Zone Centre modes measured by optical spectroscopy and associated with stripe dynamics.
We report detailed systematic measurements of the spatial variation in electronic states in the high T{c} superconductor La{2-x}Sr{x}CuO{4} (0.04<= x <= 0.16) using {63}Cu NQR for {63}Cu isotope enriched poly-crystalline samples. We demonstrate that the spatial variation in local hole concentration {63}x{local} given by {63}x{local} = x +/- {63}Dx{local}, where x is the nominal hole concentration and {63}Dx{local} is defined as the amplitude (or extent) of the spatial variation, is reflected in the frequency dependence of the spin-lattice relaxation rate {63}1/T{1} across the inhomogeneous linebroadening of the {63}Cu NQR spectrum. By using high precision measurements of the temperature dependence of {63}1/T_{1} at various positions across the {63}Cu NQR lineshape, we demonstrate that {63}Dx{local} increases below 500 - 600 K and reaches values as large as {63}Dx{local} / x ~ 0.5 in the temperature region > 150 K. By incorporating the random positioning of {+2}Sr donor ions in the lattice in a novel approach, a lower bound to the length scale of the spatial variation {63}R{patch} is deduced by fitting the entire {63}Cu NQR spectrum (including the ``B -line) using a patch-by-patch distribution of the spatial variation {63}x{local} with the patch radius {63}R_{patch} > 3.0 nm as the only free parameter. A corresponding upper bound to the amplitude of the spatial variation {63}Dx{patch} (~ 1/{63}R_{patch}) is deduced within the model, and consistent results are found with {63}Dx{local} . We also deduce the onset temperature T{Q} (> 400 K) for local orthorhombic lattice distortions which, in the region x > 0.04, is found to be larger than the onset temperature of long range structural order.
We report point-contact measurements of anisotropic magnetoresistance (AMR) in a single crystal of antiferromagnetic (AFM) Mott insulator Sr2IrO4. The point-contact technique is used here as a local probe of magnetotransport properties on the nanosca le. The measurements at liquid nitrogen temperature revealed negative magnetoresistances (MRs) (up to 28%) for modest magnetic fields (250 mT) applied within the IrO2 a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of MR shows a crossover from four-fold to two-fold symmetry in response to an increasing magnetic field with angular variations in resistance from 1-14%. We tentatively attribute the four-fold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of AFM-coupled moments in Sr2IrO4. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys/oxides (0.1-0.5%) and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also better harness the power of spintronics in a more technically favorable fashion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا