ترغب بنشر مسار تعليمي؟ اضغط هنا

Conductance in multiwall carbon nanotubes and semiconductor nanowires : evidence of a universal tunneling barrier

91   0   0.0 ( 0 )
 نشر من قبل Jean-Eric Wegrowe
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic transport in multiwall carbon nanotubes and semiconductor nanowires was compared. In both cases, the non ohmic behavior of the conductance, the so-called zero bias anomaly, shows a temperature dependence that scales with the voltage dependence. This robust scaling law describes the conductance $G(V,T)$ by a single coefficient $alpha$. A universal behavior as a function of $alpha$ is found for all samples. Magnetoconductance measurements furthermore show that the conduction regime is weak localization. The observed behavior can be understood in terms of the coulomb blockade theory, providing that a unique tunnel resistance on the order of 2000 $Omega$ and a Thouless energy of about 40 meV exists for all samples.



قيم البحث

اقرأ أيضاً

190 - Cristina Bena 2009
We calculate the current and differential conductance for the junction between a superconducting (SC) STM tip and a Luttinger liquid (LL). For an infinite single-channel LL, the SC coherence peaks are preserved in the tunneling conductance for intera ctions weaker than a critical value, while for strong interactions (g <0.38), they disappear and are replaced by cusp-like features. For a finite-size wire in contact with non-interacting leads, we find however that the peaks are restored even for extremely strong interactions. In the presence of a source-drain voltage the peaks/cusps split, and the split is equal to the voltage. At zero temperature, even very strong interactions do not smear the two peaks into a broader one; this implies that the recent experiments of Y.-F. Chen et. al. (Phys. Rev. Lett. 102, 036804 (2009)) do not rule out the existence of strong interactions in carbon nanotubes.
We propose carbon nanotubes (CNTs) with magnetic impurities as a versatile platform to achieve unconventional Kondo physics, where the CNT bath is gapped by the spin-orbit interaction and surface curvature. While the strong-coupling phase is inaccess ible for the special case of half-filled impurities in neutral armchair CNTs, the system in general can undergo quantum phase transitions to the Kondo ground state. The resultant position-specific phase diagrams are investigated upon variation of the CNT radius, chirality, and carrier doping, revealing several striking features, e.g., the existence of a maximal radius for nonarmchair CNTs to realize phase transitions, and an interference-induced suppression of the Kondo screening. We show that by tuning the Fermi energy via electrostatic gating, the quantum critical region can be experimentally accessed.
We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant $sigma$-$pi$ hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.
248 - Piotr Chudzinski 2015
We study spin-orbit coupling in metallic carbon nanotubes (CNTs) within the many-body Tomonaga-Luttinger liquid (TLL) framework. For a well defined sub-class of metallic CNTs, that contains both achiral zig-zag as well as a sub-set of chiral tubes, a n effective low energy field theory description is derived. We aim to describe system at finite dopings, but close to the charge neutrality point (commensurability). A new regime is identified where spin-orbit coupling leads to an inverted hierarchy of mini-gaps of bosonic modes. We then add a proximity coupling to a superconducting (SC) substrate and show that the only order parameter that is supported within the novel, spin-orbit induced phase is a topologically trivial s-SC.
Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL) which has now been observed in a numbe r of experimental systems. Interactions are even more important at low carrier density, and in the limit when the long-ranged Coulomb potential is the dominant energy scale, the electron liquid is expected to become a periodically ordered solid known as the Wigner crystal. In 1D, the Wigner crystal has been predicted to exhibit novel spin and magnetic properties not present in an ordinary LL. However, despite recent progress in coupled quantum wires, unambiguous experimental demonstration of this state has not been possible due to the role of disorder. Here, we demonstrate using low-temperature single-electron transport spectroscopy that a hole gas in low-disorder carbon nanotubes with a band gap is a realization of the 1D Wigner crystal. Our observation can lead to unprecedented control over the behavior of the spatially separated system of carriers, and could be used to realize solid state quantum computing with long coherence times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا