ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Mn Interstitial Diffusion in (Ga,Mn)As

177   0   0.0 ( 0 )
 نشر من قبل Janusz Kanski
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic and transport properties of (GaMn)As are known to be influenced by postgrowth annealing, and it is generally accepted that these modifications are due to outdiffusion of Mn interstitials. We show that the annealing-induced modifications are strongly accelerated if the treatment is carried out under As capping. This means that the modification rate is not limited by the diffusion process, but rather by the surface trapping of the diffusing species.

قيم البحث

اقرأ أيضاً

We study the Curie temperature and hole density of (Ga,Mn)As while systematically varying the As-antisite density. Hole compensation by As-antisites limits the Curie temperature and can completely quench long-range ferromagnetic order in the low dopi ng regime of 1-2% Mn. Samples are grown by molecular beam epitaxy without substrate rotation in order to smoothly vary the As to Ga flux ratio across a single wafer. This technique allows for a systematic study of the effect of As stoichiometry on the structural, electronic, and magnetic properties of (Ga,Mn)As. For concentrations less than 1.5% Mn, a strong deviation from Tc ~ p^0.33 is observed. Our results emphasize that proper control of As-antisite compensation is critical for controlling the Curie temperatures in (Ga,Mn)As at the low doping limit.
We report on the determination of micromagnetic parameters of epilayers of the ferromagnetic semiconductor (Ga,Mn)As, which has easy axis in the sample plane, and (Ga,Mn)(As,P) which has easy axis perpendicular to the sample plane. We use an optical analog of ferromagnetic resonance where the laser-pulse-induced precession of magnetization is measured directly in the time domain. By the analysis of a single set of pump-and-probe magneto-optical data we determined the magnetic anisotropy fields, the spin stiffness and the Gilbert damping constant in these two materials. We show that incorporation of 10% of phosphorus in (Ga,Mn)As with 6% of manganese leads not only to the expected sign change of the perpendicular to plane anisotropy field but also to an increase of the Gilbert damping and to a reduction of the spin stiffness. The observed changes in the micromagnetic parameters upon incorporating P in (Ga,Mn)As are consistent with the reduced hole density, conductivity, and Curie temperature of the (Ga,Mn)(As,P) material. We report that the magnetization precession damping is stronger for the n = 1 spin wave resonance mode than for the n = 0 uniform magnetization precession mode.
A theoretical model is presented which allows to reconcile findings of scanning tunnelling spectroscopy for (Ga,Mn)As [Richardella et al. Science 327, 66 (2010)] with results for tunneling across (Ga,Mn)As thin layers [Ohya et al. Nature Phys. 7, 342 (2011); Phys. Rev. Lett. 104, 167204 (2010)]. According to the proposed model, supported by a self-consistent solution of the Poisson and Schroedinger equations, a nonmonotonic behaviour of differential tunnel conductance as a function of bias is associated with the appearance of two-dimensional hole subbands rather in the GaAs:Be electrode than in the (Ga,Mn)As layer.
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the 2D-3D phase boundary. The increase in Tc, due to the removal of interstitial Mn by post growth annealing, is counteracted by a second process which reduces Tc and which is more effective at higher annealing temperatures. Our results show that it is necessary to optimize the growth parameters and post growth annealing procedure to obtain the highest Tc.
We demonstrate that the interplay of in-plane biaxial and uniaxial anisotropy fields in (Ga,Mn)As results in a magnetization reorientation transition and an anisotropic AC susceptibility which is fully consistent with a simple single domain model. Th e uniaxial and biaxial anisotropy constants vary respectively as the square and fourth power of the spontaneous magnetization across the whole temperature range up to T_C. The weakening of the anisotropy at the transition may be of technological importance for applications involving thermally-assisted magnetization switching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا