ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of pressure effect on the magnetic penetration depth in MgB$_2$

79   0   0.0 ( 0 )
 نشر من قبل Daniele Di Castro
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A study of the pressure effect on the magnetic penetration depth $lambda$ in polycrystalline MgB$_{2}$ was performed by measuring the temperature dependence of the magnetization under an applied pressure of 0.15 and 1.13 GPa. We found that $lambda^{-2}$ at low temperature is only slightly affected by pressure [$frac{Delta lambda^{-2}}{lambda^{-2}} = 1.5(9)%$], in contrast to cuprate superconductors, where, in the same range of pressure, a very large effect on $lambda^{-2}$ was found. Theoretical estimates indicate that most of the pressure effect on $lambda^{-2}$ in MgB$_2$ arises from the electron-phonon interaction.

قيم البحث

اقرأ أيضاً

The pressure dependence of the magnetic penetration depth in polycrystalline samples of YBa2Cu3Ox with different oxygen concentrations x = 6.45, 6.6, 6.8, and 6.98 was studied by muon spin rotation (muSR). The pressure dependence of the superfluid de nsity (p_s) as a function of the superconducting transition temperature Tc is found to deviate from the usual Uemura line. The ratio (dTc/dP)/(dp_s/dP) is factor of 2 smaller than that of the Uemura relation. In underdoped samples, the zero temperature superconducting gap and the BCS ratio both increase with increasing external hydrostatic pressure, implying an increase of the coupling strength with pressure. The relation between the pressure effect and the oxygen isotope effect on the magnetic penetration depth is also discussed. In order to analyze reliably the muSR spectra of samples with strong magnetic moments in a pressure cell, a special model was developed and applied.
Using small-angle neutron scattering we have measured the misalignment between an applied field of 4 kOe and the flux-line lattice in MgB$_2$, as the field is rotated away from the c axis by an angle $theta$. The measurements, performed at 4.9 K, sho wed the vortices canting towards the c axis for all field orientations. Using a two-band/two-gap model to calculate the magnetization we are able to fit our results yielding a penetration depth anisotropy, $glam = 1.1 pm 0.1$.
Muon-spin rotation (muSR) studies of the oxygen isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic field penetration depth lambda_{ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T_c in various HTS is briefly discussed. It is observed that different cuprate families show a similar doping dependence of the OIE on T_c. Then, bulk muSR, low-energy muSR, and magnetization studies of the total and site-selective OIE on lambda_{ab} are described in some detail. A substantial OIE on lambda_{ab} was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T_c and lambda_{ab} arise from the oxygen sites within the superconducting CuO_2 planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T_c and lambda_{ab} exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity.
We report temperature- and magnetic field-dependent bulk muon spin rotation measurements in a c-axis oriented superconductor CaC6 in the mixed state. Using both a simple second moment analysis and the more precise analytical Ginzburg-Landau model, we obtained a field independent in-plane magnetic penetration depth {lambda}ab (0) = 72(3) nm. The temperature dependencies of the normalized muon spin relaxation rate and of the normalized superfluid density result to be identical, and both are well represented by the clean limit BCS model with 2Delta/kB Tc = 3.6(1), suggesting that CaC6 is a fully gapped BCS superconductor in the clean limit regime.
We report measurements of the magnetic penetration depth lambda_m(T) in the presence of a DC magnetic field in optimally doped BSCCO-2212 single crystals. Warming, after magnetic field is applied to a zero-field cooled sample, results in a non-monoto nic lambda_m(T), which does not coincide with a curve obtained upon field cooling, thus exhibiting a hysteretic behaviour. We discuss the possible relation of our results to the vortex decoupling, unbinding, and dimensional crossover.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا