ترغب بنشر مسار تعليمي؟ اضغط هنا

Low temperature vortex phase diagram of Bi2Sr2CaCu2O8 : a magnetic penetration depth study

55   0   0.0 ( 0 )
 نشر من قبل Ruslan Prozorov
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the magnetic penetration depth lambda_m(T) in the presence of a DC magnetic field in optimally doped BSCCO-2212 single crystals. Warming, after magnetic field is applied to a zero-field cooled sample, results in a non-monotonic lambda_m(T), which does not coincide with a curve obtained upon field cooling, thus exhibiting a hysteretic behaviour. We discuss the possible relation of our results to the vortex decoupling, unbinding, and dimensional crossover.



قيم البحث

اقرأ أيضاً

We report transverse field and zero field muon spin rotation studies of the superconducting rhenium oxide pyrochlore, Cd2Re2O7. Transverse field measurements (H=0.007 T) show line broadening below Tc, which is characteristic of a vortex state, demons trating conclusively the type-II nature of this superconductor. The penetration depth is seen to level off below about 400 mK (T/Tc~0.4), with a rather large value of lambda (T=0)~7500A. The temperature independent behavior below ~ 400 mK is consistent with a nodeless superconducting energy gap. Zero-field measurements indicate no static magnetic fields developing below the transition temperature.
A study of the pressure effect on the magnetic penetration depth $lambda$ in polycrystalline MgB$_{2}$ was performed by measuring the temperature dependence of the magnetization under an applied pressure of 0.15 and 1.13 GPa. We found that $lambda^{- 2}$ at low temperature is only slightly affected by pressure [$frac{Delta lambda^{-2}}{lambda^{-2}} = 1.5(9)%$], in contrast to cuprate superconductors, where, in the same range of pressure, a very large effect on $lambda^{-2}$ was found. Theoretical estimates indicate that most of the pressure effect on $lambda^{-2}$ in MgB$_2$ arises from the electron-phonon interaction.
170 - B. Loret , S. Sakai , S. Benhabib 2017
Combining electronic Raman scattering experiments with cellular dynamical mean field theory, we present evidence of the pseudogap in the superconducting state of various hole-doped cuprates. In Bi2Sr2CaCu2O8+d we track the superconducting pseudogap h allmark, a peak-dip feature, as a function of temperature T and doping p, well beyond the optimal one. We show that, at all temperatures under the superconducting dome, the pseudogap disappears at the doping pc, between 0.222 and 0.226, where also the normal-state pseudogap collapses at a Lifshitz transition. This demonstrates that the superconducting pseudogap boundary forms a vertical line in the T-p phase diagram.
113 - M.V. Salis , P. Rodi`ere , H. Leng 2018
Superconductivity in the topological non-trivial Dirac semimetal PdTe$_2$ was recently shown to be type-I. We here report measurements of the relative magnetic penetration depth, $ Delta lambda$, on several single crystals using a high precision tunn el diode oscillator technique. The temperature variation $Delta lambda (T)$ follows an exponential function for $T/T_c < 0.4$, consistent with a fully-gapped superconducting state and weak or moderately coupling superconductivity. By fitting the data we extract a $lambda (0)$-value of $sim 500$~nm. The normalized superfluid density is in good agreement with the computed curve for a type-I superconductor with nonlocal electrodynamics. Small steps are observed in $Delta lambda (T)$, which possibly relates to a locally lower $T_c$ due to defects in the single crystalline sample. single crystalline sample.
We present a theoretical description of the London penetration depth of a multi-band superconductor in the case when both superconducting and spin-density wave orders coexist. We focus on clean systems and zero temperature to emphasize the effect of the two competing orders. Our calculation shows that the supefluid density closely follows the evolution of the superconducting order parameter as doping is increased, saturating to a BCS value in the pure superconducting state. Furthermore, we predict a strong anisotropic in-pane penetration depth induced by the spin-density wave order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا