ﻻ يوجد ملخص باللغة العربية
The traffic-like collective movement of ants on a trail can be described by a stochastic cellular automaton model. We have earlier investigated its unusual flow-density relation by using various mean field approximations and computer simulations. In this paper, we study the model following an alternative approach based on the analogy with the zero range process, which is one of the few known exactly solvable stochastic dynamical models. We show that our theory can quantitatively account for the unusual non-monotonic dependence of the average speed of the ants on their density for finite lattices with periodic boundary conditions. Moreover, we argue that the model exhibits a continuous phase transition at the critial density only in a limiting case. Furthermore, we investigate the phase diagram of the model by replacing the periodic boundary conditions by open boundary conditions.
Boundary-induced phase transitions are one of the surprising phenomena appearing in nonequilibrium systems. These transitions have been found in driven systems, especially the asymmetric simple exclusion process. However, so far no direct observation
We study the time-averaged flow in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the
We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian are abruptly changed from being in an equilibrium phase A to a different phase B and back (A$to$B$to$A). As prototype models, we consider the (inte
We analyze Mode Coupling discontinuous transition in the limit of vanishing discontinuity, approaching the so called $A_3$ point. In these conditions structural relaxation and fluctuations appear to have universal form independent from the details of
We propose a thermodynamically consistent minimal model to study synchronization which is made of driven and interacting three-state units. This system exhibits at the mean-field level two bifurcations separating three dynamical phases: a single stab