ﻻ يوجد ملخص باللغة العربية
We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.
Charge and thermal conductivities are the most important parameters of carbon nanomaterials as candidates for future electronics. In this paper we address the effects of Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron
We perform ab initio calculations of charged graphene and single-wall carbon nanotubes (CNTs). A wealth of electromechanical behaviors is obtained: (1) Both nanotubes and graphene expand upon electron injection. (2) Upon hole injection, metallic nano
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm-1 to 110 cm-1) is observed as
We investigate experimentally the transport properties of single-walled carbon nanotube bundles as a function of temperature and applied current over broad intervals of these variables. The analysis is performed on arrays of nanotube bundles whose ax
We present measurements of the $D$ Raman mode in graphene and carbon nanotubes at different laser excitation energies. The Raman mode around 1050 - 1150,cm$^{-1}$ originates from a double-resonant scattering process of longitudinal acoustic (LA) phon