ترغب بنشر مسار تعليمي؟ اضغط هنا

Itinerant magnetism in Kondo crystal CeB6 as indicated by polarized neutron scattering

60   0   0.0 ( 0 )
 نشر من قبل Gavrilov Sergey
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A magnetic Bragg reflection corresponding to the wave vector k13 = (2pi/a)[1/2,1/2,1/2] of the antiferro-quadrupolar ordering is found in CeB6 in zero magnetic field below the Neel temperature TN. Its intensity is two orders of magnitude weaker than those due to the basic magnetic structure [O. Zaharko et al., Phys. Rev. B 68, 214401 (2003)]. The peak has a width of the other Bragg reflections below TN, but widens abruptly at T = TN with simultaneous increase of intensity. Correlation length just above TN is of the order of 70 A. The peak intensity decreases to zero at T = 7 K with no visible anomaly at the antiferro-quadrupolar ordering temperature TQ = 3.3 K. The features of this magnetic ordering are typical for the itinerant magnetism with 5d electron of Ce3+ [Yu.S. Grushko et al., phys. stat. sol. (b) 128, 591 (1985)] being involved.

قيم البحث

اقرأ أيضاً

90 - K. Matan , R. Morinaga , K. Iida 2009
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2, a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy of 9.8(4) meV. The in-plane spin-wave velocity v_ab and out-of-plane spin-wave velocity v_c measured at 12 meV are 280(150) and 57(7) meV A, respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At T_N=136(1) K, the gap closes, and quasi-elastic scattering is observed above T_N, indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes rodlike, characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.
We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local -moment J_1-J2 model implies very different in-plane nearest-neighbor exchange parameters along the $a$ and $b$ directions, both in the orthorhombic and tetragonal phases. However, the spectrum calculated from the J1-J2 model deviates significantly from our data. We show that the qualitative features that cannot be described by the J1-J2 model are readily explained by calculations from a 5-band itinerant mean-field model.
As a simple cubic system with only one f electron per cerium ion, CeB6 is of model character to investigate the interplay of orbital phenomena with magnetism. It is also a textbook example of a compound that exhibits magnetically hidden order -- a lo w-temperature magnetic phase with ordered quadrupolar moments. It is difficult to identify the symmetry of such hidden-order states in common x-ray or neutron scattering experiments, as there is no signal in zero field, however alternative techniques like neutron diffraction in external field, resonant x-ray scattering, or ultrasonic investigations can be applied. Another possible method for characterizing hidden order is to look at the magnetic excitation spectrum, which carries the imprint of the multipolar interactions and the hidden order parameter in its dispersion relations. Using a specific candidate model, the dispersion is calculated and then compared to that measured with inelastic neutron scattering. Until recently, only a limited amount of data which show the presence of dispersing excitations measured along a few high-symmetry directions in an applied magnetic field were available. Early attempts to compare such calculations with experiments showed that only strongest modes at high-symmetry points could be identified. The present review of the most recent neutron-scattering results is intended to satisfy the need of more accurate inelastic neutron-scattering experiments as a function of field and temperature, giving us the opportunity to identify existing excitation branches in CeB6 and conclusively compare them with the theoretically predicted multipolar excitations.
The electronic structure of the ferromagnetic superconductor URhGe in the paramagnetic phase has been studied by angle-resolved photoelectron spectroscopy using soft x rays (hn=595-700 eV). Dispersive bands with large contributions from U 5f states w ere observed in the ARPES spectra, and form Fermi surfaces. The band structure in the paramagnetic phase is partly explained by the band-structure calculation treating all U 5f electrons as being itinerant, suggesting that an itinerant description of U 5f states is a good starting point for this compound. On the other hand, there are qualitative disagreements especially in the band structure near the Fermi level (E_B < 0.5 eV). The experimentally observed bands are less dispersive than the calculation, and the shape of the Fermi surface is different from the calculation. The changes in spectral functions due to the ferromagnetic transition were observed in bands near the Fermi level, suggesting that the ferromagnetism in this compound has an itinerant origin.
We use neutron scattering to study the Pr$^{3+}$ crystalline electric field (CEF) excitations in the filled skutterudite PrOs$_4$As$_{12}$. By comparing the observed levels and their strengths under neutron excitation with the theoretical spectrum an d neutron excitation intensities, we identify the Pr$^{3+}$ CEF levels, and show that the ground state is a magnetic $Gamma_4^{(2)}$ triplet, and the excited states $Gamma_1$, $Gamma_4^{(1)}$ and $Gamma_{23}$ are at 0.4, 13 and 23 meV, respectively. A comparison of the observed CEF levels in PrOs$_4$As$_{12}$ with the heavy fermion superconductor PrOs$_4$Sb$_{12}$ reveals the microscopic origin of the differences in the ground states of these two filled skutterudites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا