ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron-scattering studies of spin dynamics in pure and doped CeB6

88   0   0.0 ( 0 )
 نشر من قبل Dmytro Inosov S.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a simple cubic system with only one f electron per cerium ion, CeB6 is of model character to investigate the interplay of orbital phenomena with magnetism. It is also a textbook example of a compound that exhibits magnetically hidden order -- a low-temperature magnetic phase with ordered quadrupolar moments. It is difficult to identify the symmetry of such hidden-order states in common x-ray or neutron scattering experiments, as there is no signal in zero field, however alternative techniques like neutron diffraction in external field, resonant x-ray scattering, or ultrasonic investigations can be applied. Another possible method for characterizing hidden order is to look at the magnetic excitation spectrum, which carries the imprint of the multipolar interactions and the hidden order parameter in its dispersion relations. Using a specific candidate model, the dispersion is calculated and then compared to that measured with inelastic neutron scattering. Until recently, only a limited amount of data which show the presence of dispersing excitations measured along a few high-symmetry directions in an applied magnetic field were available. Early attempts to compare such calculations with experiments showed that only strongest modes at high-symmetry points could be identified. The present review of the most recent neutron-scattering results is intended to satisfy the need of more accurate inelastic neutron-scattering experiments as a function of field and temperature, giving us the opportunity to identify existing excitation branches in CeB6 and conclusively compare them with the theoretically predicted multipolar excitations.

قيم البحث

اقرأ أيضاً

In zero magnetic field, the famous neutron spin resonance in the f-electron superconductor CeCoIn5 is similar to the recently discovered exciton peak in the non-superconducting CeB6. Magnetic field splits the resonance in CeCoIn5 into two components, indicating that it is a doublet. Here we employ inelastic neutron scattering (INS) to scrutinize the field dependence of spin fluctuations in CeB6. The exciton shows a markedly different behavior without any field splitting. Instead, we observe a second field-induced magnon whose energy increases with field. At the ferromagnetic zone center, however, we find only a single mode with a non-monotonic field dependence. At low fields, it is initially suppressed to zero together with the antiferromagnetic order parameter, but then reappears at higher fields inside the hidden-order phase, following the energy of an electron spin resonance (ESR). This is a unique example of a ferromagnetic resonance in a heavy-fermion metal seen by both ESR and INS consistently over a broad range of magnetic fields.
95 - T.E. Mason 1998
Neutron scattering can provide detailed information about the energy and momentum dependence of the magnetic dynamics of materials provided sufficiently large single crystals are available. This requirement has limited the number of rare earth high t emperature superconducting materials that have been studied in any detail. However, improvements in crystal growth in recent years has resulted in considerable progress in our understanding of the behaviour of the magnetism of the CuO planes in both the superconducting and normal state. This review will focus primarily on the spin fluctuations in La_{2-x}Sr_{x}CuO_{4} and YBa_{2}Cu_{3}O_{7-x} since these are the two systems for which the most detailed results are available. Although gaps in our understanding remain, there is now a consistent picture of on the spin fluctuation spectra in both systems as well as the changes induced by the superconducting transition. For both La_{2-x}Sr_{x}CuO_{4} and underdoped YBa_{2}Cu_{3}O_{7-x} the normal state response is characterised by incommensurate magnetic fluctuations. The low energy excitations are suppressed by the superconducting transition with a corresponding enhancement in the response at higher energies. For YBa_{2}Cu_{3}O_{7-x} the superconducting state is accompanied by the rapid development of a commensurate resonant response whose energy varies with T_{c}. In underdoped samples this resonance persists above T_{c}.
We report inelastic neutron scattering experiments on single crystals of superconducting Ba0.67K0.33Fe2As2 (Tc = 38 K). In addition to confirming the resonance previously found in powder samples, we find that spin excitations in the normal state form longitudinally elongated ellipses along the QAFM direction in momentum space, consistent with density functional theory predictions. On cooling below Tc, while the resonance preserves its momentum anisotropy as expected, spin excitations at energies below the resonance become essentially isotropic in the in-plane momentum space and dramatically increase their correlation length. These results suggest that the superconducting gap structures in Ba0.67Ka0.33Fe2As2 are more complicated than those suggested from angle resolved photoemission experiments.
A magnetic Bragg reflection corresponding to the wave vector k13 = (2pi/a)[1/2,1/2,1/2] of the antiferro-quadrupolar ordering is found in CeB6 in zero magnetic field below the Neel temperature TN. Its intensity is two orders of magnitude weaker than those due to the basic magnetic structure [O. Zaharko et al., Phys. Rev. B 68, 214401 (2003)]. The peak has a width of the other Bragg reflections below TN, but widens abruptly at T = TN with simultaneous increase of intensity. Correlation length just above TN is of the order of 70 A. The peak intensity decreases to zero at T = 7 K with no visible anomaly at the antiferro-quadrupolar ordering temperature TQ = 3.3 K. The features of this magnetic ordering are typical for the itinerant magnetism with 5d electron of Ce3+ [Yu.S. Grushko et al., phys. stat. sol. (b) 128, 591 (1985)] being involved.
Single crystals of the lightly-doped spin-Peierls system Cu(1-x)Cd(x)GeO3 have been studied using bulk susceptibility, x-ray diffraction, and inelastic neutron scattering techniques. We investigate the triplet gap in the magnetic excitation spectrum of this quasi-one dimensional quantum antiferromagnet, and its relation to the spin-Peierls dimerisation order parameter. We employ two different theoretical forms to model the inelastic neutron scattering cross section and chi(Q,omega), and show the sensitivity of the gap energy to the choice of chi(Q,omega). We find that a finite gap exists at the spin-Peierls phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا