ﻻ يوجد ملخص باللغة العربية
We study the semi-classical motion of holes by exact numerical solution of the Luttinger model. The trajectories obtained for the heavy and light holes agree well with the higher order corrections to the abelian and the non-abelian adiabatic theories in Ref. [1] [S. Murakami et al., Science 301, 1378(2003)], respectively. It is found that the hole trajectories contain rapid oscillations reminiscent of the Zitterbewegung of relativistic electrons. We also comment on the non-conservation of helicity of the light holes.
Within the Floquet theory of periodically driven quantum systems, we developed the theory of light-induced modification of electronic states in semiconductor materials described by the Luttinger Hamiltonian (the electronic term $Gamma_8$). Particular
In ballistic conductors, there is a low-time threshold for the appearance of quantum effects in transport coefficients. This low-time threshold is the Ehrenfest time. Most previous studies of the Ehrenfest-time dependence of quantum transport assumed
We analyse nonequilibrium phase transitions in microcavity polariton condensates trapped in optically induced annular potentials. We develop an analytic model for annular optical traps, which gives an intuitive interpretation for recent experimental
Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engi
The model of interacting fermion systems in one dimension known as Tomonaga-Luttinger liquid (TLL) provides a simple and exactly solvable theoretical framework, predicting various intriguing physical properties. Evidence of TLL has been observed as p