ﻻ يوجد ملخص باللغة العربية
The model of interacting fermion systems in one dimension known as Tomonaga-Luttinger liquid (TLL) provides a simple and exactly solvable theoretical framework, predicting various intriguing physical properties. Evidence of TLL has been observed as power-law behavior in the electronic transport and momentum-resolved spectroscopy on various types of one-dimensional (1D) conductors. However, these measurements, which rely on dc transport involving tunneling processes, cannot identify the eigenmodes of the TLL, i.e., collective excitations characterized by non-trivial effective charge e* and charge velocity v*. The elementary process of charge fractionalization, a phenomenon predicted to occur at the junction of a TLL and non-interacting leads, has not been observed. Here we report time-resolved transport measurements on an artificial TLL comprised of coupled integer quantum Hall edge channels, successfully identifying single charge fractionalization processes. An electron wave packet with charge e incident from a non-interacting region breaks up into several fractionalized charge wave packets at the edges of the artificial TLL region, from which e* and v* can be directly evaluated. These results are informative for elucidating the nature of TLLs and low-energy excitations in the edge channels.
In contrast to a free electron system, a Tomonaga-Luttinger (TL) liquid in a one dimensional (1D) electron system hosts charge and spin excitations as independent entities. When an electron wave packet is injected into a TL liquid, it transforms into
The Tomonaga-Luttinger liquid (TLL) concept is believed to generically describe the strongly-correlated physics of one-dimensional systems at low temperatures. A hallmark signature in 1D conductors is the quantum phase transition between metallic and
Electronic waveguides in graphene formed by counterpropagating snake states in suitable inhomogeneous magnetic fields are shown to constitute a realization of a Tomonaga-Luttinger liquid. Due to the spatial separation of the right- and left-moving sn
There have been conflicting reports on the electronic properties of twin domain boundaries (DBs) in MoSe2 monolayer, including the quantum well states, charge density wave, and Tomonaga-Luttinger liquid (TLL). Here we employ low-temperature scanning
The existence of long-lived non-equilibrium states without showing thermalization, which has previously been demonstrated in time evolution of ultracold atoms, suggests the possibility of their spatial analogue in transport behavior of interacting el