ﻻ يوجد ملخص باللغة العربية
We suggest a new theoretical approach describing the velocity of magnetic flux dendrite penetration into thin superconducting films. The key assumptions for this approach are based upon experimental observations. We treat a dendrite tip motion as a propagating flux jump instability. Two different regimes of dendrite propagation are found. A fast initial stage is followed by a slow stage, which sets in as soon as a dendrite enters into the vortex-free region. We find that the dendrite velocity is inversely proportional to the sample thickness. The theoretical results and experimental data obtained by a magneto-optic pump-probe technique are compared and excellent agreement between the calculations and measurements is found.
We present numerical and analytical studies of coupled nonlinear Maxwell and thermal diffusion equations which describe nonisothermal dendritic flux penetration in superconducting films. We show that spontaneous branching of propagating flux filament
We have patterned a hexagonal array of nano-scale holes into a series of ultrathin, superconducting Bi/Sb films with transition temperatures 2.65 K $<T_{co} < $5 K. These regular perforations give the films a phase-sensitive periodic response to an a
We have performed flux noise and AC-susceptibility measurements on two 400 nm thick MgB$_2$ films. Both measurement techniques give information about the vortex dynamics in the sample, and hence the superconducting transition, and can be linked to ea
The magneto-optical imaging technique is used to visualize the penetration of the magnetic induction in YBa$_{2}$Cu$_{3}$O$_{7-delta}$ thin films during surface resistance measurements. The in-situ surface resistance measurements were performed at 7
Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition (IBAD)-MgO/Y2O3/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (Tc) of 43 K with