ﻻ يوجد ملخص باللغة العربية
Photoluminescence study using the 325 nm He-Cd excitation is reported for the Au nanoclusters embedded in SiO2 matrix. Au clusters are grown by ion beam mixing with 100 KeV Ar+ irradiation on Au [40 nm]/SiO2 at various fluences and subsequent annealing at high temperature. The blue bands above ~3 eV match closely with reported values for colloidal Au nanoclusters and supported Au nanoislands. Radiative recombination of sp electrons above Fermi level to occupied d-band holes are assigned for observed luminescence peaks. Peaks at 3.1 eV and 3.4 eV are correlated to energy gaps at the X- and L-symmetry points, respectively, with possible involvement of relaxation mechanism. The blue shift of peak positions at 3.4 eV with decreasing cluster size is reported to be due to the compressive strain in small clusters. A first principle calculation based on density functional theory using the full potential linear augmented plane wave plus local orbitals (FP-LAPW+LO) formalism with generalized gradient approximation (GGA) for the exchange correlation energy is used to estimate the band gaps at the X- and L-symmetry points by calculating the band structures and joint density of states (JDOS) for different strain values in order to explain the blueshift of ~0.1 eV with decreasing cluster size around L-symmetry point.
Optical photoluminescence studies are performed in self-ion (Ga+)-implanted nominally doped n-GaN nanowires. A 50-keV Ga+ focused ion beam (FIB) in the fluence range of 1x1014 -2x10^16 ions cm^-2 is used for the irradiation process. A blueshift is ob
Silica is known as the archetypal strong liquid, exhibiting an Arrhenius viscosity curve with a high glass transition temperature and constant activation energy. However, given the ideally isostatic nature of the silica network, the presence of even
Porous silicon layers were embedded with ZnTe using the isothermal close space sublimation technique. The presence of ZnTe was demonstrated using cross-sectional energy dispersive spectroscopy maps. ZnTe embedded samples present intense room temperat
We report direction dependent luminescence (DDL), i.e., the asymmetry in the luminescence intensity between the opposite directions of the emission, in multiferroic CuB2O4. Although it is well known that the optical constants can change with the reve
Silica, water and hydrogen are known to be the major components of celestial bodies, and have significant influence on the formation and evolution of giant planets, such as Uranus and Neptune. Thus, it is of fundamental importance to investigate thei