ﻻ يوجد ملخص باللغة العربية
We observe a strong dependence of the exciton spin relaxation in CdTe quantum dots on the average dot size and the depth of the confining potential. For the excitons confined to the as-grown CdTe quantum dots we find the spin relaxation time to be 4.8 ns. After rapid thermal annealing, which increases the average dot size and leads to weaker confinement, we measure the spin relaxation tine to be 1.5 ns, resulting in smaller values of the absolute polarization of the quantum dot emission. This dramatic enhancement of the spin scattering efficiency upon annealing is attributed to increased mixing between different spin states in larger CdTe quantum dots.
Exciton spin relaxation is investigated in single epitaxially grown semiconductor quantum dots in order to test the expected spin relaxation quenching in this system. We study the polarization anisotropy of the photoluminescence signal emitted by iso
We demonstrate a new method of measuring the exciton spin relaxation time in semiconductor nanostructures by continuous-wave photoluminescence. We find that for self-assembled CdTe quantum dots the degree of circular polarization of emission is large
Exciton spin dynamics in quasi-spherical CdS quantum dots is studied in detail experimentally and theoretically. Exciton states are calculated using the 6-band k.p Hamiltonian. It is shown that for various sets of Luttinger parameters, when the wurtz
The spin relaxation time $T_{1}$ in zinc blende GaN quantum dot is investigated for different magnetic field, well width and quantum dot diameter. The spin relaxation caused by the two most important spin relaxation mechanisms in zinc blende semicond
We study the exciton spin relaxation in CdTe self-assembled quantum dots by using polarized photoluminescence spectroscopy in magnetic field. The experiments on single CdTe quantum dots and on large quantum dot ensembles show that by combining phonon