ترغب بنشر مسار تعليمي؟ اضغط هنا

Exciton spin dynamics in spherical CdS quantum dots

127   0   0.0 ( 0 )
 نشر من قبل Petr Nemec
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exciton spin dynamics in quasi-spherical CdS quantum dots is studied in detail experimentally and theoretically. Exciton states are calculated using the 6-band k.p Hamiltonian. It is shown that for various sets of Luttinger parameters, when the wurtzite lattice crystal field splitting and Coulomb interaction between the electron-hole pair are taken into account exactly, both the electron and hole wavefunction in the lowest exciton state are of S-type. This rules out the spatial-symmetry-induced origin of the dark exciton in CdS quantum dots. The exciton bleaching dynamics is studied using time- and polarization-resolved transient absorption technique of ultrafast laser spectroscopy. Several samples with a different mean size of CdS quantum dots in different glass matrices were investigated. This enabled the separation of effects that are typical for one particular sample from those that are general for this type of material. The experimentally determined dependence of the electron spin relaxation rate on the radius of quantum dots agrees well with that computed theoretically.



قيم البحث

اقرأ أيضاً

We present a fully three-dimensional study of the multiexciton optical response of vertically coupled GaN-based quantum dots via a direct-diagonalization approach. The proposed analysis is crucial in understanding the fundamental properties of few-pa rticle/exciton interactions and, more important, may play an essential role in the design/optimization of semiconductor-based quantum information processing schemes. In particular, we focus on the interdot exciton-exciton coupling, key ingredient in recently proposed all-optical quantum processors. Our analysis demonstrates that there is a large window of realistic parameters for which both biexcitonic shift and oscillator strength are compatible with such implementation schemes.
We observe a strong dependence of the exciton spin relaxation in CdTe quantum dots on the average dot size and the depth of the confining potential. For the excitons confined to the as-grown CdTe quantum dots we find the spin relaxation time to be 4. 8 ns. After rapid thermal annealing, which increases the average dot size and leads to weaker confinement, we measure the spin relaxation tine to be 1.5 ns, resulting in smaller values of the absolute polarization of the quantum dot emission. This dramatic enhancement of the spin scattering efficiency upon annealing is attributed to increased mixing between different spin states in larger CdTe quantum dots.
We demonstrate a new method of measuring the exciton spin relaxation time in semiconductor nanostructures by continuous-wave photoluminescence. We find that for self-assembled CdTe quantum dots the degree of circular polarization of emission is large r when exciting polarized excitons into the lower energy spin state than in the case when the excitons are excited into the higher energy spin state. A simple rate equation model gives the exciton spin relaxation time in CdTe quantum dots equal to 4.8+/-0.3 ns, significantly longer than the quantum dot exciton recombination time 300 ps.
Micro-photoluminescence spectroscopy at variable temperature, excitation intensity and energy was performed on a single InAs/AlAs self-assembled quantum dot. The exciton emission line (zero-phonon line, ZPL) exhibits a broad sideband due to exciton-a coustic phonon coupling by the deformation potential mechanism. Additionally, narrow low-energy sidebands at about 0.25 meV of the ZPL are attributed to exciton-acoustic phonon piezoelectric coupling. In lowering the excitation energy or intensity these bands gradually dominate the emission spectrum of the quantum dot while the ZPL disappears. At high excitation intensity the sidebands due to piezoelectric coupling decrease strongly and the ZPL dominates the spectrum as a consequence of screening of the piezoelectric coupling by the photocreated free carriers.
177 - I. Favero 2005
Exciton spin relaxation is investigated in single epitaxially grown semiconductor quantum dots in order to test the expected spin relaxation quenching in this system. We study the polarization anisotropy of the photoluminescence signal emitted by iso lated quantum dots under steady-state or pulsed non-resonant excitation. We find that the longitudinal exciton spin relaxation time is strikingly short ($leq$100 ps) even at low temperature. This result breaks down the picture of a frozen exciton spin in quantum dots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا