ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of stochastic nonlinear dynamical models from trajectory measurements

211   0   0.0 ( 0 )
 نشر من قبل Dmitry Luchinsky G.
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new algorithm is presented for reconstructing stochastic nonlinear dynamical models from noisy time-series data. The approach is analytical; consequently, the resulting algorithm does not require an extensive global search for the model parameters, provides optimal compensation for the effects of dynamical noise, and is robust for a broad range of dynamical models. The strengths of the algorithm are illustrated by inferring the parameters of the stochastic Lorenz system and comparing the results with those of earlier research. The efficiency and accuracy of the algorithm are further demonstrated by inferring a model for a system of five globally- and locally-coupled noisy oscillators.



قيم البحث

اقرأ أيضاً

This paper addresses the problem of identifying sparse linear time-invariant (LTI) systems from a single sample trajectory generated by the system dynamics. We introduce a Lasso-like estimator for the parameters of the system, taking into account the ir sparse nature. Assuming that the system is stable, or that it is equipped with an initial stabilizing controller, we provide sharp finite-time guarantees on the accurate recovery of both the sparsity structure and the parameter values of the system. In particular, we show that the proposed estimator can correctly identify the sparsity pattern of the system matrices with high probability, provided that the length of the sample trajectory exceeds a threshold. Furthermore, we show that this threshold scales polynomially in the number of nonzero elements in the system matrices, but logarithmically in the system dimensions --- this improves on existing sample complexity bounds for the sparse system identification problem. We further extend these results to obtain sharp bounds on the $ell_{infty}$-norm of the estimation error and show how different properties of the system---such as its stability level and textit{mutual incoherency}---affect this bound. Finally, an extensive case study on power systems is presented to illustrate the performance of the proposed estimation method.
69 - Daniele Musso 2020
We propose to optimize neural networks with a uniformly-distributed random learning rate. The associated stochastic gradient descent algorithm can be approximated by continuous stochastic equations and analyzed within the Fokker-Planck formalism. In the small learning rate regime, the training process is characterized by an effective temperature which depends on the average learning rate, the mini-batch size and the momentum of the optimization algorithm. By comparing the random learning rate protocol with cyclic and constant protocols, we suggest that the random choice is generically the best strategy in the small learning rate regime, yielding better regularization without extra computational cost. We provide supporting evidence through experiments on both shallow, fully-connected and deep, convolutional neural networks for image classification on the MNIST and CIFAR10 datasets.
Adaptive filtering is a powerful class of control theoretic concepts useful in extracting information from noisy data sets or performing forward prediction in time for a dynamic system. The broad utilization of the associated algorithms makes them at tractive targets for similar problems in the quantum domain. To date, however, the construction of adaptive filters for quantum systems has typically been carried out in terms of stochastic differential equations for weak, continuous quantum measurements, as used in linear quantum systems such as optical cavities. Discretized measurement models are not as easily treated in this framework, but are frequently employed in quantum information systems leveraging projective measurements. This paper presents a detailed analysis of several technical innovations that enable classical filtering of discrete projective measurements, useful for adaptively learning system-dynamics, noise properties, or hardware performance variations in classically correlated measurement data from quantum devices. In previous work we studied a specific case of this framework, in which noise and calibration errors on qubit arrays could be efficiently characterized in space; here, we present a generalized analysis of filtering in quantum systems and demonstrate that the traditional convergence properties of nonlinear classical filtering hold using single-shot projective measurements. These results are important early demonstrations indicating that a range of concepts and techniques from classical nonlinear filtering theory may be applied to the characterization of quantum systems involving discretized projective measurements, paving the way for broader adoption of control theoretic techniques in quantum technology.
Research in modern data-driven dynamical systems is typically focused on the three key challenges of high dimensionality, unknown dynamics, and nonlinearity. The dynamic mode decomposition (DMD) has emerged as a cornerstone for modeling high-dimensio nal systems from data. However, the quality of the linear DMD model is known to be fragile with respect to strong nonlinearity, which contaminates the model estimate. In contrast, sparse identification of nonlinear dynamics (SINDy) learns fully nonlinear models, disambiguating the linear and nonlinear effects, but is restricted to low-dimensional systems. In this work, we present a kernel method that learns interpretable data-driven models for high-dimensional, nonlinear systems. Our method performs kernel regression on a sparse dictionary of samples that appreciably contribute to the underlying dynamics. We show that this kernel method efficiently handles high-dimensional data and is flexible enough to incorporate partial knowledge of system physics. It is possible to accurately recover the linear model contribution with this approach, disambiguating the effects of the implicitly defined nonlinear terms, resulting in a DMD-like model that is robust to strongly nonlinear dynamics. We demonstrate our approach on data from a wide range of nonlinear ordinary and partial differential equations that arise in the physical sciences. This framework can be used for many practical engineering tasks such as model order reduction, diagnostics, prediction, control, and discovery of governing laws.
Stochastic dynamical systems with continuous symmetries arise commonly in nature and often give rise to coherent spatio-temporal patterns. However, because of their random locations, these patterns are not well captured by current order reduction tec hniques and a large number of modes is typically necessary for an accurate solution. In this work, we introduce a new methodology for efficient order reduction of such systems by combining (i) the method of slices, a symmetry reduction tool, with (ii) any standard order reduction technique, resulting in efficient mixed symmetry-dimensionality reduction schemes. In particular, using the Dynamically Orthogonal (DO) equations in the second step, we obtain a novel nonlinear Symmetry-reduced Dynamically Orthogonal (SDO) scheme. We demonstrate the performance of the SDO scheme on stochastic solutions of the 1D Korteweg-de Vries and 2D Navier-Stokes equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا