ﻻ يوجد ملخص باللغة العربية
We investigate the time autocorrelation of the molecular magnetization $M(t)$ for three classes of magnetic molecules (antiferromagnetic rings, grids and nanomagnets), in contact with the phonon heat bath. For all three classes, we find that the exponential decay of the fluctuations of $M(t)$, associated with the irreversible exchange of energy with the heat bath, is characterized by a single characteristic time $tau (T,B)$ for not too high temperature $T$ and field $B$. This is reflected in a nearly single-lorentzian shape of the spectral density of the fluctuations. We show that such fluctuations are effectively probed by NMR, and that our theory explains the recent phenomenological observation by Baek et al. (PRB70, 134434) that the Larmor-frequency dependence of $1/T_1$ data in a large number of AFM rings fits to a single-lorentzian form.
119Sn nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rate (1/T1) in SnO2 nanoparticles were measured as a function of temperature and compared with those of SnO2 bulk sample. A 15% loss of 119Sn NMR signal intensity for the nano
Measurements of proton NMR and the spin lattice relaxation rate 1/T1 in the octanuclear iron (III) cluster [Fe8(N3C6H15)6O2(OH)12][Br8 9H2O], in short Fe8, have been performed at 1.5 K in a powder sample aligned along the main anisotropy z axis, as a
A new scenario of the mechanism of intriguing ferromagnetic properties in Mn-doped magnetic semiconductor (Ga,Mn)As is examined in detail. We find that magnetic features seen in zero-field cooled and field cooled magnetizations are not interpreted wi
The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed inside nano-carriers. In addition to its usual long-range na
Recent theoretical work has established the presence of hidden spin and orbital textures in non-magnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried