ترغب بنشر مسار تعليمي؟ اضغط هنا

Photo-induced demagnetization and polaron binding energy increase observed by mid-infrared pump-probe spectroscopy in ferromagnetic Ga$_{0.94}$Mn$_{0.06}$As

89   0   0.0 ( 0 )
 نشر من قبل Makoto Kuwata-Gonokami
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-resolved transmittance measurements performed on Ga$_{0.94}$Mn$_{0.06}$As in the vicinity of the Mn-induced mid-infrared absorption band are presented. Upon photo-excitation, a slow increase (hundreds of ps timescale) of the differential transmittance is observed and found to be directly related to demagnetization. The temporal profiles of the transmittance and of the demagnetization measured by time-resolved magneto-optical Kerr spectroscopy are found to coincide. Well below the Curie temperature, the maximum amplitude of the slow component of the differential transmittance as a function of the probe energy is on the rising edge of the linear absorption peak, suggesting that ferromagnetic ordering can be explained by a coupling of the Mn local spins through bound magnetic polarons.

قيم البحث

اقرأ أيضاً

We present the manipulation of magnetic and electrical properties of (Ga,Mn)As by the adsorption of dye-molecules as a first step towards the realization of light-controlled magnetic-semiconductor/dye hybrid devices. A significant lowering of the Cur ie temperature with a corresponding increase in electrical resistance and a higher coercive field is found for the GaMnAs/fluorescein system with respect to (Ga,Mn)As. Upon exposure to visible light a shift in Curie temperature towards higher values and a reduction of the coercive field can be achieved in photo-sensitized (Ga,Mn)As. A mayor change in the XPS spectrum of (Ga,Mn)As indicates the appearance of occupied levels in the energy range corresponding to the (Ga,Mn)As valence band states upon adsorption of fluorescein. This points towards a hole quenching effect at the molecule-(Ga,Mn)As interface which is susceptible to light exposure.
A remarkable progress towards functional ferromagnetic semiconductor materials for spintronics has been achieved in p-type (Ga,Mn)As. Robust hole-mediated ferromagnetism has, however, been observed also in other III-V hosts such as antimonides, GaP o r (Al,Ga)As which opens a wide area of possibilities for optimizing the host composition towards higher ferromagnetic Curie temperatures. Here we explore theoretically ferromagnetism and Mn incorporation in Ga(As,P) and (Al,Ga)As ternary hosts. While alloying (Ga,Mn)As with Al has only a small effect on the Curie temperature we predict a sizable enhancement of Curie temperatures in the smaller lattice constant Ga(As,P) hosts. Mn-doped Ga(As,P) is also favorable, as compared to (Al,Ga)As, with respect to the formation of carrier and moment compensating interstitial Mn impurities. In (Ga,Mn)(As,P) we find a marked decrease of the partial concentration of these detrimental impurities with increasing P content.
We report on the determination of micromagnetic parameters of epilayers of the ferromagnetic semiconductor (Ga,Mn)As, which has easy axis in the sample plane, and (Ga,Mn)(As,P) which has easy axis perpendicular to the sample plane. We use an optical analog of ferromagnetic resonance where the laser-pulse-induced precession of magnetization is measured directly in the time domain. By the analysis of a single set of pump-and-probe magneto-optical data we determined the magnetic anisotropy fields, the spin stiffness and the Gilbert damping constant in these two materials. We show that incorporation of 10% of phosphorus in (Ga,Mn)As with 6% of manganese leads not only to the expected sign change of the perpendicular to plane anisotropy field but also to an increase of the Gilbert damping and to a reduction of the spin stiffness. The observed changes in the micromagnetic parameters upon incorporating P in (Ga,Mn)As are consistent with the reduced hole density, conductivity, and Curie temperature of the (Ga,Mn)(As,P) material. We report that the magnetization precession damping is stronger for the n = 1 spin wave resonance mode than for the n = 0 uniform magnetization precession mode.
We present a study of photo-excited magnetization dynamics in ferromagnetic (Ga,Mn)As films observed by time-resolved magneto-optical measurements. The magnetization precession triggered by linearly polarized optical pulses in the absence of an exter nal field shows a strong dependence on photon frequency when the photo-excitation energy approaches the band-edge of (Ga,Mn)As. This can be understood in terms of magnetic anisotropy modulation by both laser heating of the sample and by hole-induced non-thermal paths. Our findings provide a means for identifying the transition of laser-triggered magnetization dynamics from thermal to non-thermal mechanisms, a result that is of importance for ultrafast optical spin manipulation in ferromagnetic materials via non-thermal paths.
Non-thermal laser induced spin excitations, recently discovered in conventional oxide and metal ferromagnets, open unprecedented opportunities for research and applications of ultrafast optical manipulation of magnetic systems. Ferromagnetic semicond uctors, and (Ga,Mn)As in particular, should represent ideal systems for exploring this new field. Remarkably, the presence of non-thermal effects has remained one of the outstanding unresolved problems in the research of ferromagnetic semiconductors to date. Here we demonstrate that coherent magnetization dynamics can be excited in (Ga,Mn)As non-thermally by a transfer of angular momentum from circularly polarized femtosecond laser pulses and by a combination of non-thermal and thermal effects due to a transfer of energy from laser pulses. The thermal effects can be completely suppressed in piezo-electrically controlled samples. Our work is based on pump-and-probe measurements in a large set of (Ga,Mn)As epilayers and on systematic analysis of circular and linear magneto-optical coefficients. We provide microscopic theoretical interpretation of the experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا