ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the tunnel rates through a few-electron quantum dot

89   0   0.0 ( 0 )
 نشر من قبل Ronald Hanson
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate how rate equations can be employed to find analytical expressions for the sequential tunneling current through a quantum dot as a function of the tunnel rates, for an arbitrary number of states involved. We apply this method at the one-to-two electron transition where the electron states are known exactly. By comparing the obtained expressions to experimental data, the tunnel rates for six transitions are extracted. We find that these rates depend strongly on the spin and orbital states involved in the tunnel process.

قيم البحث

اقرأ أيضاً

78 - L. Gaudreau , A. Kam , G. Granger 2009
In this paper we report on a tuneable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is im portant as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by novel charge transfer behaviour.
We present a method for reading out the spin state of electrons in a quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correla ted to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. We experimentally demonstrate the method by performing read-out of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on in-plane magnetic field.
A few electron double electrostatic lateral quantum dot can be transformed into a few electron triple quantum dot by applying a different combination of gate voltages. Quadruple points have been achieved at which all three dots are simultaneously on resonance. At these special points in the stability diagram four occupation configurations are possible. Both charge detection and transport experiments have been performed on this device. In this short paper we present data and confirm that transport is coherent by observing a Pi phase shift in magneto-conductance oscillations as one passes through the quadruple point.
We report charge sensing measurements of a silicon metal-oxide-semiconductor quantum dot using a single-electron transistor as a charge sensor with dynamic feedback control. Using digitallycontrolled feedback, the sensor exhibits sensitive and robust detection of the charge state of the quantum dot, even in the presence of charge drifts and random charge rearrangements. The sensor enables the occupancy of the quantum dot to be probed down to the single electron level.
Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here we report the characterization of a quantum dot couple d to a localized electronic state, and we present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through this device enable the determination of the most likely location of the localized state, consistent with an electronically active impurity in the quantum well near the edge of the quantum dot. The experiments we report are consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا