ترغب بنشر مسار تعليمي؟ اضغط هنا

Background charge fluctuation in a GaAs quantum dot device

44   0   0.0 ( 0 )
 نشر من قبل SungWoo Jung
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate background charge fluctuation in a GaAs quantum dot device by measuring 1/f noise in the single-electron tunneling current through the dot. The current noise is understood as fluctuations of the confinement potential and tunneling barriers. The estimated potential fluctuation increases almost linearly with temperature, which is consistent with a simple model of the 1/f noise. We find that the fluctuation increases very slightly when electrons are injected into excited states of the quantum dot.

قيم البحث

اقرأ أيضاً

We present measurements of the electron temperature using gate defined quantum dots formed in a GaAs 2D electron gas in both direct transport and charge sensing mode. Decent agreement with the refrigerator temperature was observed over a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization stages integrated into the sample wires below 1 mK, the device electron temperature saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its environment as well as electronic noise complicates temperature measurements but could potentially provide further insight into the device characteristics. We discuss thermal coupling mechanisms, address possible reasons for the temperature saturation and delineate the prospects of further reducing the device electron temperature.
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport acro ss the system and the Local Density of States of the dots. We study the case of small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain at the Fermi level. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We finally study how the transport properties are affected as N is increased. For the study we used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory at T = 0. The results obtained with both methods describe qualitatively and also quantitatively the same physics.
The response of a single InGaAs quantum dot, embedded in a miniaturized charge-tunable device, to an applied GHz bandwidth electrical pulse is investigated via its optical response. Quantum dot response times of 1.0 pm 0.1 ns are characterized via se veral different measurement techniques, demonstrating GHz bandwidth electrical control. Furthermore a novel optical detection technique based on resonant electron-hole pair generation in the hybridization region is used to map fully the voltage pulse experienced by the quantum dot, showing in this case a simple exponential rise.
We study phonon emission in a GaAs/AlGaAs double quantum dot by monitoring the tunneling of a single electron between the two dots. We prepare the system such that a known amount of energy is emitted in the transition process. The energy is converted into lattice vibrations and the resulting tunneling rate depends strongly on the phonon scattering and its effective phonon spectral density. We are able to fit the measured transition rates and see imprints of interference of phonons with themselves causing oscillations in the transition rates.
Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definit ion of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions presents a significant challenge in quantum device development. We report synchrotron x-ray nanodiffraction measurements combined with dynamical x-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04 deg. and strain on the order of 10^-4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا