ﻻ يوجد ملخص باللغة العربية
de Haas-van Alphen oscillation spectrum is studied for an idealized two-dimensional Fermi liquid with two parabolic bands in the case of canonical (fixed number of quasiparticles) and grand canonical (fixed chemical potential) ensembles. As already reported in the literature, oscillations of the chemical potential in magnetic field yield frequency combinations that are forbidden in the framework of the semiclassical theory. Exact analytical calculation of the Fourier components is derived at zero temperature and an asymptotic expansion is given for the high temperature and low magnetic field range. A good agreement is obtained between analytical formulae and numerical computations.
A formula for potential U of the He-4--He-4 interaction in the liquid state is obtained by the direct electromagnetic computation as a function of the interatomic distance R. The potential decreases exponentially at large R. The further development and application of the result are discussed.
We study a model for an argon-like fluid parameterised in terms of a hard-core repulsion and a two-Yukawa potential. The liquid-gas phase behaviour of the model is obtained from the thermodynamically self-consistent Ornstein-Zernike approximation (SC
We study work extraction processes mediated by finite-time interactions with an ambient bath -- emph{partial thermalizations} -- as continuous time Markov processes for two-level systems. Such a stochastic process results in fluctuations in the amoun
Quantifying the statistics of occupancy of solvent molecules in the vicinity of solutes is central to our understanding of solvation phenomena. Number fluctuations in small `solvation shells around solutes cannot be described within the macroscopic g
One notion of phase for stochastic oscillators is based on the mean return-time (MRT): a set of points represents a certain phase if the mean time to return from any point in this set to this set after one rotation is equal to the mean rotation perio