ترغب بنشر مسار تعليمي؟ اضغط هنا

An analytical approach to the Mean--Return-Time~Phase of isotropic stochastic oscillators

104   0   0.0 ( 0 )
 نشر من قبل Benjamin Lindner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One notion of phase for stochastic oscillators is based on the mean return-time (MRT): a set of points represents a certain phase if the mean time to return from any point in this set to this set after one rotation is equal to the mean rotation period of the oscillator (irrespective of the starting point). For this so far only algorithmically defined phase, we derive here analytical expressions for the important class of isotropic stochastic oscillators. This allows us to evaluate cases from the literature explicitly and to study the behavior of the MRT phase in the limits of strong noise. We also use the same formalism to show that lines of constant return time variance (instead of constant mean return time) can be defined, and that they in general differ from the MRT-isochrons.

قيم البحث

اقرأ أيضاً

We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free) energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1=2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.
We apply the stochastic thermodynamics formalism to describe the dynamics of systems of complex Langevin and Fokker-Planck equations. We provide in particular a simple and general recipe to calculate thermodynamical currents, dissipated and propagati ng heat for networks of nonlinear oscillators. By using the Hodge decomposition of thermodynamical forces and fluxes, we derive a formula for entropy production that generalises the notion of non-potential forces and makes trans- parent the breaking of detailed balance and of time reversal symmetry for states arbitrarily far from equilibrium. Our formalism is then applied to describe the off-equilibrium thermodynamics of a few examples, notably a continuum ferromagnet, a network of classical spin-oscillators and the Frenkel-Kontorova model of nano friction.
We study the influence of a dissipation process on diffusion dynamics triggered by slow fluctuations. We study both strong- and weak-friction regime. When the latter regime applies, the system is attracted by the basin of either Gauss or Levy statist ics according to whether the fluctuation correlation function is integrable or not. We analyze with a numerical calculation the border between the two basins of attraction.
How long does it take a quantum particle to return to its origin? As shown previously under repeated projective measurements aimed to detect the return, the closed cycle yields a geometrical phase which shows that the average first detected return ti me is quantized. For critical sampling times or when parameters of the Hamiltonian are tuned this winding number is modified. These discontinuous transitions exhibit gigantic fluctuations of the return time. While the general formalism of this problem was studied at length, the magnitude of the fluctuations, which is quantitatively essential, remains poorly characterized. Here, we derive explicit expressions for the variance of the return time, for quantum walks in finite Hilbert space. A classification scheme of the diverging variance is presented, for four different physical effects: the Zeno regime, when the overlap of an energy eigenstate and the detected state is small and when two or three phases of the problem merge. These scenarios present distinct physical effects which can be analyzed with the fluctuations of return times investigated here, leading to a topology-dependent time-energy uncertainty principle.
We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itse lf and the second, the definition of entropy production rate which is nonnegative and vanishes in thermodynamic equilibrium. Based on these assumptions we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium, and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasi-equilibrium processes, the convexity of the equilibrium surface, the monotonic time behavior of thermodynamic potentials, including entropy, the bilinear form of the entropy production rate, the Onsager coefficients and reciprocal relations, and the nonequilibrium steady states of chemical reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا