ﻻ يوجد ملخص باللغة العربية
One notion of phase for stochastic oscillators is based on the mean return-time (MRT): a set of points represents a certain phase if the mean time to return from any point in this set to this set after one rotation is equal to the mean rotation period of the oscillator (irrespective of the starting point). For this so far only algorithmically defined phase, we derive here analytical expressions for the important class of isotropic stochastic oscillators. This allows us to evaluate cases from the literature explicitly and to study the behavior of the MRT phase in the limits of strong noise. We also use the same formalism to show that lines of constant return time variance (instead of constant mean return time) can be defined, and that they in general differ from the MRT-isochrons.
We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical
We apply the stochastic thermodynamics formalism to describe the dynamics of systems of complex Langevin and Fokker-Planck equations. We provide in particular a simple and general recipe to calculate thermodynamical currents, dissipated and propagati
We study the influence of a dissipation process on diffusion dynamics triggered by slow fluctuations. We study both strong- and weak-friction regime. When the latter regime applies, the system is attracted by the basin of either Gauss or Levy statist
How long does it take a quantum particle to return to its origin? As shown previously under repeated projective measurements aimed to detect the return, the closed cycle yields a geometrical phase which shows that the average first detected return ti
We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itse